Technology Improves Water Management

Pastoral agriculture in New Zealand produces more than a third of all internationally traded dairy products, about 20% of all internationally-traded sheep and 10% of beef.

For a country smaller than the size of Nebraska with a population of four million, these are impressive statistics.

The country’s natural advantages are an equable climate and the ability to grow grass all year round. However, increased productivity over recent years — largely to fulfill dairy export demands has led to increased dependence on irrigation systems to extend dairy into new regions and maintain productivity levels through the dry summer months.

This has put pressure on freshwater allocations with resultant restrictions, so farmers are looking to optimize the water-use efficiency of their irrigated pastoral systems, aiming for best conversion of each millimeter of applied water to plant growth. Consequently, there is a current trend to replace traditional flood irrigation systems with more efficient center pivot and lateral sprinkler systems, with an estimated 40% of all irrigated land now under these sprinkler systems. This opens up opportunities for variable rate irrigation scheduling, with individual sprinkler control.

The New Zealand Centre for Precision Agriculture and Landcare Research (an environmental research part of Crown Research Institute) are developing a soil-based decision support tool for variable rate irrigation scheduling, so that a sprinkler system can be directed to deliver different depths of water to different zones based on soil differences. This gives better use of stored soil water, especially in the variable, young alluvial soils, which typify many of New Zealand’s soils. For example, some of our research in the Canterbury Plains of the South Island has found that a 600-meter (approximately 1,968 feet) center pivot, covering an area of 113 hectares (about 280 acres), irrigates soils with available water holding capacities ranging between 40 and 100 mm available water (approx 1.5 to 4 inches), so that some zones ideally require irrigation earlier than others to maintain potential yields.

EM mapping is being used to delineate soil spatial variability on a basis of differences in soil apparent electrical conductivity (EC). Soil EC differences are largely due to differences in soil texture and moisture in these non-saline soils, and our research has found good relationships between soil available water holding capacity (AWC) and soil EC so soil AWC maps can be produced. These maps indicate the maximum amount of available water that a soil can supply to plants, and are used, with daily soil moisture predictions or measurements of wetting and drying within each zone, to produce soil water status maps. Soil water status maps predict the day on which each zone reaches it’s irrigation trigger point (Fig. 2). The maps are available for upload to an automated variable-rate irrigation system.

The variable-rate irrigation system is being developed by WMC Technology Ltd (NZ) and is at present in the testing stage. Solenoids are fitted to sprinklers and controlled in banks of four, with each controller contributing to a wireless network. The system is controlled by software that determines the application depth at any point under the irrigator.

Figure 2 shows a soil water status map for Jan. 4, 2008, where zones that require irrigation are marked in red. This site is on a farm in the Manawatu Sand Country, where corn is being grown as a grain and fodder crop. The red zones are characterized by sandy knolls in an undulating sand plain topography. These sandy knolls tend to dry out very quickly in early summer and become hydrophobic (water repellent). Ideally they require very frequent irrigation events to maintain soil moisture for potential crop growth. In comparison, other low lying zones that are just meters away stay wet by receiving additional water as a result of capillary rise from a high water table and therefore require less irrigation to maintain the optimum soil moisture for potential crop growth. This is a situation where variable-rate irrigation is desirable as it 1) meets the needs of high water-use soils and 2) decreases over-watering of low-lying areas that might otherwise become flooded, which in turn stunts plant growth and increases the likelihood of nutrient leaching and plant disease, as well as wasting water.

Variable-rate irrigation (VRI) is an enabling technology with multiple benefits. It improves water-use efficiency and allows crop flexibility under one irrigator where crop type can be matched to soil type. It also increases options for chemigation and fertigation. Saved water can be redirected elsewhere, allowing better strategic use when it is limited or restrictions are imposed mid-season when crop demand is highest. Our research shows water savings of 10% to 20% under VRI systems, based on hypothetical irrigation scheduling using a water balance model where soil zones are only irrigated when they reach their specific irrigation trigger point (i.e. a known AWC depletion factor).

This research will continue to 1) develop the variable rate irrigation soil decision tool, and to 2) investigate the potential advantages and uptake of these systems by New Zealand agriculture.

The New Zealand Centre for Precision Agriculture (NZCPA) is undertaking a wide range of research to meet the demands of current agricultural systems in the country. The Centre has developed a pasture growth meter to map pasture yields (Fig. 3). The maps are a grazing management tool aimed at improved pasture utilization. The rapid pasture meter is now produced and marketed by a local manufacturing company CDAX Systems Ltd., Palmerston North, New Zealand.

GPS collars on dairy cows indicate their preferential grazing zones (Fig. 4), and this information will be incorporated into the pasture yield maps for further improvements in pasture utilization. In addition, pasture quality is being assessed using on-the-go near-infrared sensors.

Research has also been conducted to assess the accuracy of ground and aerial fertilizer spreaders, driven by the need for more efficient use of fertilizers not only because of soaring prices but also for better environmental control. Driver and pilot accuracy was assessed with GPS tracking, and fertilizer spreading accuracy by transverse spread tests. The studies showed that ground spreader accuracy was 30%, which could be improved 18% with GPS guidance. Topdressing planes were less accurate at 90%, improved to 60% with GPS guidance. The research contributed to the introduction of a national certification scheme for quality accreditation of fertilizer spreaders, called “Spreadmark.”

Pioneering methods, developed in the 1950s to topdress superphosphate onto New Zealand hill country, opened up these areas for productive sheep and beef farming. However, our research shows it is difficult to accurately spread fertilizer from aerial topdressing planes. In addition, these regions are typified by highly variable pasture performance due to effects of slope and aspect, and preferred animal camp sites on flat areas. Hill country has been identified as a key area that can benefit from the introduction of precision agriculture practices, where pasture production varies significantly with topography, leading to the need for fertilizer placement optimization.

However, this will rely on first improving the accuracy of fertilizer application technologies in these areas. New Zealand farmers are adopting GPS guidance for farm machinery and finding immediate energy and time savings of 10% to 15%. More than 50% of registered fertilizer spreading trucks now have GPS guidance assistance. Auto-steer cultivation is being used for strip tillage and other farm operations such as precision planting and spraying, and there is also uptake of auto-steer for controlled traffic farming. In addition, GPS guidance is allowing improved on-farm traceability and auditing.In New Zealand, where primary production contributes 16% of GDP there is significant potential for increased adoption of precision agriculture technologies to improve the efficiencies of our productive landscapes.

Leave a Reply

One comment on “Technology Improves Water Management

  1. The Purchase Manager
    Dear Sir,

    We are one of the leading Manufacturer and Exporter of Precision Brass Components & Brass Items; we are in this field having vast experience of more than 20 years in manufacturing Brass Quality Components. Our main export business is properly set with European Countries as well as UK and USA and many more.

    I would appreciate if you can just take a look to the catalog attached with this file. It will give you clear picture of the Brass Products we deal in with. Plus we also prepare all parts and products according to the samples and drawings provided by our respected customer.
    We generally deal in the following Brass Products: –
    Brass Insert
    Brass Hex Nut
    Brass Hex Bolts
    Brass Reducer
    Brass Nozzle
    Brass C.P. Extension Nipple
    Brass Sprinklers Accessories
    Brass Sprinkler
    Brass Fittings
    Brass Turned Parts
    Brass Adapter
    Brass Plug
    Brass Sanitary Fittings
    Brass Precision Components
    Brass Bush

    We would appreciate if you could kindly arrange to send us your valued Purchase Inquiries to enable us to quote you our most competitive prices and to start business relations with your esteemed company. We assure you if given chance, we will prove our ability and you would truly appreciate the Quality of the products manufactured by us and services provided.

    Quality Assurance :-
    We as a brass Builder Hardware Manufacturer Our each Brass Items in our factory has to pass through stringent quality control inspections and only products that pass our accepted standards leave our premises. We also welcome and facilitate customers with their own designs and specifications.

    Note- Please views our brass components company profile and sends your fresh requirements of brass components
    Looking forward to hearing from you soon.

    Thanks & Regards,
    Mr. Kalpesh Taraviya

    M/s. JAGDISH BRASS PRODUCTS
    Plot No.486-C 2, G.I.D.C.
    Shanker Tekri Udhyognagar,
    Jamnagar – 361004,
    (Gujarat), India
    Cell:009924409980 (Mr.Kalpesh)
    Email: [email protected], [email protected]
    Website: Jagdishbrass.com

Precision Irrigation Stories
Drip-irrigation
Precision IrrigationFertigation as a Precision Agriculture Tool
August 14, 2018
Fertigation is a fertilizer application method in which dissolved fertilizers are delivered to the crop through the irrigation system. This Read More
Bergwerff-in-field-weather-stations-and-Ranch-Systems-radio-control-module
Industry NewsRanch Systems, IoT Provider Aeris Announce Collaboration Agreement
July 25, 2018
Aeris, a technology provider in the Internet of Things (IoT) space, said today it is collaborating with Ranch Systems of Read More
Nebraska-Storm
Precision IrrigationNotes from the Field: A Look at Irrigation Management Practices in Nebraska
July 2, 2018
One of the things I love most about my work is making periodic treks into the field – more often Read More
Precision Irrigation
Data ManagementAgGateway Submits Irrigation Data Standard to ASABE
March 19, 2018
AgGateway has submitted its proposed irrigation data exchange standard to the American Society of Agricultural and Biological Engineers (ASABE), a Read More
Trending Articles
Soil-Hand
Data ManagementAre You Using Your Soil to Its Full Potential?
September 14, 2018
Harvest is progressing across most parts of the U.S. and those growers who aren’t already harvesting are gearing up to Read More
Grower-Retailer
Imagery/SensingAgtech: 10 Things I Hate About You!
September 4, 2018
Before you get bent out of shape from the title, remember if you’ve read my articles before you know I Read More
Kansas State University
Industry NewsKansas State University, Topcon Form Precision Ag Research Partnership
August 30, 2018
Kansas State University and Topcon Agriculture are collaborating to develop tools and systems to advance precision agriculture and support farmers. Read More
Blockchain building block graphic
Specialty CropsIs Blockchain the Future of Food Safety?
August 24, 2018
When the Internet Protocol Suite (TCP/IP) was standardized in 1982, permitting the worldwide proliferation of interconnected networks and eventually the Read More
WinField’s Joel Wipperfurth On Empowering Data-Driven Decisions
InfoAg ConferenceOne on One with Joel Wipperfurth, Winfield United
August 15, 2018
Winfield United's Joel Wipperfurth discusses ag technology trends and topics during last month’s InfoAg Conference. Read More
Geosys
Industry NewsUrtheCast to Acquire Geosys from Land O’Lakes in $20 Million Deal
August 15, 2018
UrtheCast Corp. and Land O’Lakes, Inc. today announced they have entered a binding term sheet for the purchase of Geosys Read More
Latest News
Corn field sunset
Decision Support SoftwareLand O’Lakes SUSTAIN Launches Ambitious Digital S…
September 24, 2018
Land O’Lakes SUSTAIN today announced its plan to roll out the Truterra Insights Engine, an interactive on-farm digital platform that Read More
Business ManagementIvy Tech, Farmers Partner to Help Precision Ag Educatio…
September 20, 2018
Harvest time has taken on a new meaning for some Wabash Valley farmers, and Bobbi Hunt-Kincaid hopes her family’s first Read More
Sensors
Sensors/IoTThe Answer to Agriculture’s Daunting Challenges – Soil …
September 20, 2018
According to the United Nations, 9.6 billion people will live on planet Earth by 2050. Feeding these mouths will require Read More
Google-Earth-Map-featured-image
Data ManagementRainfall Revisited: Accurate Observations and Beyond
September 18, 2018
As a provider of weather analysis and forecast services to the agricultural industry, one of the most common questions I Read More
PenelopeNagel
Business ManagementWhy Is Funding a Challenge for Women-Led Agtech Compani…
September 17, 2018
When it comes to women-led agtech companies the funding discussion never seems to cease. In June after the The New Read More
Mobile Phone in field
Decision Support SoftwareWhy Are 570 Million Farmers Not Yet Using Agricultural …
September 17, 2018
Until recently, using agricultural apps and software was a rare practice among growers. This is now changing. The mass adoption Read More
Soil-Hand
Data ManagementAre You Using Your Soil to Its Full Potential?
September 14, 2018
Harvest is progressing across most parts of the U.S. and those growers who aren’t already harvesting are gearing up to Read More
Grower Services & SolutionsDeere-Granular Collaboration Produces New Profit Maps T…
September 14, 2018
The newest development from the ongoing John Deere-Granular product development and marketing collaboration is Profit Maps, now available to farmers Read More
Wingtra
DronesOpinion: Combining Two Pluses with the WingtraOne UAV
September 13, 2018
For the every-day consumer interested in UAVs, there is an ocean of products from which to choose. This includes the Read More
Farmer-tablet
AsiaShould Agri-Input Manufacturers Outsource E-Commerce to…
September 12, 2018
Editor’s note: Venky Ramachandran is a contributing writer for PrecisionAg.com’s sister site, AgriBusinessGlobal.com. This article was originally published on LinkedIn. Now, Read More
ICON-Link-Licensing_featured-image
Industry NewsValley Irrigation Adds Remote Irrigation Management Opt…
September 11, 2018
Valley Irrigation, an industry leader in smart irrigation solutions, has announced enhancements to its remote management technologies. Multi-Year Licensing In Read More
Reflex-Connect-Agri-Inject-featured-image
Variable Rate ApplicationVariable Rate Fertigation System Expands with Mobile Co…
September 10, 2018
Building on the success of its Reflex Variable Rate Fertigation system, Agri-Inject has taken fluid injection to the next level Read More
Industry NewsTeralytic Earns Ag Data Transparent Certification
September 10, 2018
Soil analytics company Teralytic has completed the Ag Data Transparent certification, affirming that their data use is private, secure, and Read More
Business ManagementTop 20 Two-Year Colleges for Precision Agriculture
September 10, 2018
Earlier this year, I compiled a list of the 25 best colleges for precision agriculture. It was quite the process. Read More
Industry NewsRaven, Topcon Announce Slingshot API Agreement
September 6, 2018
Raven Industries and Topcon Agriculture announced today a licensing agreement for Topcon Agriculture’s use of the Slingshot Application Programming Interface Read More
Tablet Grower
Data ManagementThe Power of Predictive Analytics in Agriculture
September 5, 2018
Years ago if we would have been told computers, data, and technology would be scattered around every farm there may Read More
DronessenseFly Launches eBee X Drone, Breaks Through 1,000 ac…
September 5, 2018
senseFly today reportedly sets a new standard in mapping tools with the launch of the eBee X. Launched with the Read More
AmericasOn The Scene: 2018 Farm Progress Show Wrap Up
September 5, 2018
Former Monsanto President (now Bayer CropScience Chief Operating Office) Brett Begemann’s opening salvo during his first appearance at a Farm Read More