The Future Fusion Of Machines, Models And Sensors In Precision Agriculture

There is a quiet, technical revolution occurring in agriculture that is going to impact the field of precision agriculture in the very near future. Lacking good terminology, I will call this revolution the “fusion” of machines, sensors and models. This fusion is being borne out of the explosion of data being realized through the integration of information, computer and communication technologies with traditional hardware and analytical thinking. It is going to affect the very nature of decision-making in crop management and every device and machine engaged in field production. Before elaborating on the “fusion,” I will briefly review the individual evolution of machines, sensors and models.

Since the beginning of agriculture, man has sought devices, such as tools, pumps and plows, to improve the efficiency of crop production while reducing labor and conserving resources. These devices were first operated by hand, later pulled by animals, and lastly powered by engines. The transformation of agriculture by machines in just the last 100 years has been truly amazing. As reported in a 2005 USDA bulletin entitled “The 20th Century Transformation of U.S. Agriculture and Farm Policy,” about 41% of the workforce — 22 million work animals and a few, newly invented, gasoline-powered tractors — were involved in agriculture at the start of the 20th century. By the start of the 21st century, slightly less than 2% of the workforce, 5 million tractors and a few work animals were active in agriculture. During this 100-year transformation, the number of farms in agriculture decreased by 63% while the average farm size increased by 67%.

Sensor Upgrades

A sensor is a device that converts a physical stimulus into an action or signal. Sensors have a history of development similar to machines. Beginning as simple devices that recorded a change in sound, motion, heat, pressure, light or other physical phenomena, sensors quickly evolved over the last 100 years into sophisticated arrays and networks. Sensors are ubiquitous in everyday life. They automatically open entrance doors in businesses, control lighting and heating in homes, detect the amount of fuel in cars and set off alarms in case of fire or gas leaks. Sensors can be placed locally or be remote, such as on aircraft or satellites.

Several recent advances have made sensors more applicable to agriculture. First, they have been coupled with radio communication. Today, a sensor placed in the field can measure some physical phenomenon, convert that measurement into an electronic signal and then transmit that signal with electromagnetic waves in the radio frequencies to a distant base station. This sensed measurement and its transmission by radiowaves can be done automatically, freeing up the need for someone to be on-site to retrieve recorded data.

The second advance in sensors is miniaturization. Sensors are gradually becoming smaller and smaller while still performing as their larger counterparts. Miniaturization is possible due to the use of new materials that require less volume, reduction in the size of electronic circuits and the exploitation of newly discovered physical, chemical and biological properties. Miniaturization, at or below the molecular scale, is called nanotechnology.

A third advance is the efficiency and cost reduction in the manufacturing of sensors. Sensors are becoming cheaper to make, which allows for more of them to be placed in the field at the same cost.

The fourth and last advance is the ability to combine sensors in networks. Sensor networks through their measurement and transmission of signals in spatial arrays over time can create a dynamic, two-dimensional and even a three-dimensional picture of some physical phenomenon.

A model is the mathematical representation of the physical world. Through parameters and equations, models mimic or “simulate” the properties and processes of some physical system. Models have existed on paper for more than 100 years, but their modern-day identity is linked to computers. Computers, through program code and machine instructions, can computationally execute the mathematical equations defining a model many times faster than a human can do by hand. Computer-based models can input and process data at mind-boggling rates. Furthermore, model-processed data or output can be presented in many visual forms, such as graphs and maps in support of management decision-making.

The Coming Fusion

With this background, it is easy to appreciate the fusion of machines, sensors and models. In the coming revolution, there will be a virtual “command” center running farm operations. Sensors flying on aircraft and satellites overhead in conjunction with those judiciously placed in fields and on tractors will measure physical, chemical and biological properties important to crop production. These sensor-based measurements will be converted to electronic signals and transmitted by radio to the command center. Base computers located in the center will receive the transmitted signals and deliver the data embodied in them via the Internet to models in the cloud. The models will process the data and pass back products in the form of tables, graphs and maps, depicting the state and changes in environmental and biological phenomena impacting crop development and growth. The same models will pass back recommendations on courses of action given status of the phenomena monitored in the field.

For example, a plant epidemiological model, inputting data collected in a field, may predict the incidence and severity of a disease important to crop yield. The model may recommend the timing and amount of a fungicide to minimize yield loss and control the spread of the disease. A farm manager would review the model-generated products and recommendation, and then choose a control tactic based on past experience and the available resources on hand.

If the choice is a fungicide as recommended by the model, a precision agriculture program could generate a variable-rate application map. This map would specify the rates of a chosen fungicide to be applied on a field according to the pattern of disease interpreted from sensor data. The variable-rate application map could be delivered wirelessly to spray equipment and, with GPS, guide the proper placement of the fungicide across a field. The fungicide application would change the progress of the disease, which would be indirectly monitored by sensor-recorded, environmental conditions. In a continuous cycle of sensed data, model processing of data and the incorporation of model products into precision agriculture programs, information would be generated to support management decision making during a growing season.

As precision agriculture evolves, it will play an important role in driving the demand for the fusion of machine, sensors and models. It will provide programs that allow a farm manager to act on model products. The same programs will support management decisions by guiding the operations of machines.

The new tech development reported in this issue represents small steps toward the realization of this fusion. With each new development, precision agriculture, along with machines, sensors and models, will increasingly provide decision-makers with information at an unprecedented scale and level of detail.

Leave a Reply

3 comments on “The Future Fusion Of Machines, Models And Sensors In Precision Agriculture

Data Management Stories
Sentinel-1
Data ManagementSatellites Key in Providing Agriculture’s Next Generation of Data
September 27, 2018
With a range of extreme-weather events currently playing out across the globe, from floods on the east coast of the Read More
AmericasFarmers Edge Announces New Retail-Facing Precision Ag Platform
September 25, 2018
Farmers Edge announced the launch of a new solution designed exclusively for agricultural professionals to enhance their relationships with customers Read More
Google-Earth-Map-featured-image
Data ManagementRainfall Revisited: Accurate Observations and Beyond
September 18, 2018
As a provider of weather analysis and forecast services to the agricultural industry, one of the most common questions I Read More
Soil-Hand
Data ManagementAre You Using Your Soil to Its Full Potential?
September 14, 2018
Harvest is progressing across most parts of the U.S. and those growers who aren’t already harvesting are gearing up to Read More
Trending Articles
PrecisionAg InstitutePrecisionAg Institute Whitepaper Library
October 1, 2018
Welcome to the PrecisionAg Institute Whitepaper library! Here you will find free whitepapers and case studies from the PrecisionAg Institute Partners Read More
Sensors
Sensors/IoTThe Answer to Agriculture’s Daunting Challenges – Soil Sensors
September 20, 2018
According to the United Nations, 9.6 billion people will live on planet Earth by 2050. Feeding these mouths will require Read More
Soil-Hand
Data ManagementAre You Using Your Soil to Its Full Potential?
September 14, 2018
Harvest is progressing across most parts of the U.S. and those growers who aren’t already harvesting are gearing up to Read More
Grower-Retailer
Imagery/SensingAgtech: 10 Things I Hate About You!
September 4, 2018
Before you get bent out of shape from the title, remember if you’ve read my articles before you know I Read More
Kansas State University
Industry NewsKansas State University, Topcon Form Precision Ag Research Partnership
August 30, 2018
Kansas State University and Topcon Agriculture are collaborating to develop tools and systems to advance precision agriculture and support farmers. Read More
Blockchain building block graphic
Specialty CropsIs Blockchain the Future of Food Safety?
August 24, 2018
When the Internet Protocol Suite (TCP/IP) was standardized in 1982, permitting the worldwide proliferation of interconnected networks and eventually the Read More
Latest News
Auto-Thinner
Robotics/Labor SaversPrecision Agriculture in Specialty Crops: Labor, Cost S…
October 9, 2018
Agriculture is going through an equivalent of what the computer industry went through in the 1970s and 1980s. That’s when Read More
Growing-Innovations-logo
EventsA Crazy 2018 is Why We Need Growing Innovations
October 8, 2018
If you’re here you likely have received a special Meister Media Worldwide code to get $100 off your registration to Read More
AmericasConBAP 2018 Highlights Precision Agriculture in Brazil
October 8, 2018
The Brazilian Congress of Precision Agriculture 2018 (ConBAP 2018) was held October 2-4 in Curitiba, Paraná. Held every two years, Read More
GAR-Tootelian-Sensor
Service ProvidersGar Tootelian: Putting Ag Technology to the Test
October 8, 2018
In California’s Central Valley, a diverse crop market in which Pest Control Advisors (PCAs) are the dominant players when it Read More
Spray Drift
Decision Support SoftwareHow Technology Can Help You Prevent Spray Drift
October 8, 2018
Spray drift. News articles about damage caused by spray drift seem to pop up regularly, almost as daily reminders, during Read More
UncategorizedTopcon, Kansas State Make it Official: Establish Resear…
October 4, 2018
Today, Topcon Agriculture and Kansas State University announced a comprehensive partnership, according to a news release issued by the University. Read More
AmericasIvy Tech Students, Helena Collaborate on ‘The Fie…
October 4, 2018
Students in Ivy Tech Community College’s Agriculture and Precision Agriculture programs have had an interesting opportunity this growing season to Read More
Industry NewsSDSU to Host Precision Ag Bowl, Raven Facility Grand Op…
October 3, 2018
South Dakota State is the first university in the nation to offer a four-year degree in precision agriculture. This Saturday, Read More
Industry NewsProagrica: Connectivity in the Agriculture Supply Chain…
October 2, 2018
A recent survey of US ag retail businesses from Proagrica showed that future-proofing is one of the dominant pain points Read More
Thad-Becker
Business ManagementMFA: Mainstreaming Precision Ag Services
October 1, 2018
There’s no ironclad approach to building business through a precision program offering. There are as many nuanced approaches to success Read More
PrecisionAg InstitutePrecisionAg Institute Whitepaper Library
October 1, 2018
Welcome to the PrecisionAg Institute Whitepaper library! Here you will find free whitepapers and case studies from the PrecisionAg Institute Partners Read More
corn field
Industry NewsMFA Inc. Announces Expanded Partnership with Adapt-N
October 1, 2018
MFA Inc. has announced an expanded partnership between its Precision Advantage, Crop-Trak, and Nutri-Track service platforms and the Adapt-N nitrogen Read More
IBM-Watson
Industry NewsIBM to Launch Watson Decision Platform for Agriculture
October 1, 2018
When you think about artificial intelligence (AI), you probably don’t imagine using it for a farm. IBM is bringing data Read More
Aquaoso
Decision Support SoftwareNew Software Monitors Water Risk for California Agricul…
September 28, 2018
AQUAOSO Technologies PBC, a software company that helps customers identify, understand, and monitor water supply risks has officially unveiled their Read More
Sentinel-1
Data ManagementSatellites Key in Providing Agriculture’s Next Generati…
September 27, 2018
With a range of extreme-weather events currently playing out across the globe, from floods on the east coast of the Read More
Satellite
AmericasArgentina Bets on $600m Satellite to Boost Agriculture …
September 25, 2018
Argentina is launching a new microwave imaging satellite to monitor natural disasters and soil moisture, in a long-term bid to Read More
AmericasFarmers Edge Announces New Retail-Facing Precision Ag P…
September 25, 2018
Farmers Edge announced the launch of a new solution designed exclusively for agricultural professionals to enhance their relationships with customers Read More
FIRA
EventsAgricultural Robotics Take Center Stage at FIRA 2018
September 24, 2018
The future of agricultural innovation will continue to rely heavily on collaboration and exchange of ideas among all industry players. Read More