The Future Fusion Of Machines, Models And Sensors In Precision Agriculture

There is a quiet, technical revolution occurring in agriculture that is going to impact the field of precision agriculture in the very near future. Lacking good terminology, I will call this revolution the “fusion” of machines, sensors and models. This fusion is being borne out of the explosion of data being realized through the integration of information, computer and communication technologies with traditional hardware and analytical thinking. It is going to affect the very nature of decision-making in crop management and every device and machine engaged in field production. Before elaborating on the “fusion,” I will briefly review the individual evolution of machines, sensors and models.

Since the beginning of agriculture, man has sought devices, such as tools, pumps and plows, to improve the efficiency of crop production while reducing labor and conserving resources. These devices were first operated by hand, later pulled by animals, and lastly powered by engines. The transformation of agriculture by machines in just the last 100 years has been truly amazing. As reported in a 2005 USDA bulletin entitled “The 20th Century Transformation of U.S. Agriculture and Farm Policy,” about 41% of the workforce — 22 million work animals and a few, newly invented, gasoline-powered tractors — were involved in agriculture at the start of the 20th century. By the start of the 21st century, slightly less than 2% of the workforce, 5 million tractors and a few work animals were active in agriculture. During this 100-year transformation, the number of farms in agriculture decreased by 63% while the average farm size increased by 67%.

Sensor Upgrades

A sensor is a device that converts a physical stimulus into an action or signal. Sensors have a history of development similar to machines. Beginning as simple devices that recorded a change in sound, motion, heat, pressure, light or other physical phenomena, sensors quickly evolved over the last 100 years into sophisticated arrays and networks. Sensors are ubiquitous in everyday life. They automatically open entrance doors in businesses, control lighting and heating in homes, detect the amount of fuel in cars and set off alarms in case of fire or gas leaks. Sensors can be placed locally or be remote, such as on aircraft or satellites.

Several recent advances have made sensors more applicable to agriculture. First, they have been coupled with radio communication. Today, a sensor placed in the field can measure some physical phenomenon, convert that measurement into an electronic signal and then transmit that signal with electromagnetic waves in the radio frequencies to a distant base station. This sensed measurement and its transmission by radiowaves can be done automatically, freeing up the need for someone to be on-site to retrieve recorded data.

The second advance in sensors is miniaturization. Sensors are gradually becoming smaller and smaller while still performing as their larger counterparts. Miniaturization is possible due to the use of new materials that require less volume, reduction in the size of electronic circuits and the exploitation of newly discovered physical, chemical and biological properties. Miniaturization, at or below the molecular scale, is called nanotechnology.

A third advance is the efficiency and cost reduction in the manufacturing of sensors. Sensors are becoming cheaper to make, which allows for more of them to be placed in the field at the same cost.

The fourth and last advance is the ability to combine sensors in networks. Sensor networks through their measurement and transmission of signals in spatial arrays over time can create a dynamic, two-dimensional and even a three-dimensional picture of some physical phenomenon.

A model is the mathematical representation of the physical world. Through parameters and equations, models mimic or “simulate” the properties and processes of some physical system. Models have existed on paper for more than 100 years, but their modern-day identity is linked to computers. Computers, through program code and machine instructions, can computationally execute the mathematical equations defining a model many times faster than a human can do by hand. Computer-based models can input and process data at mind-boggling rates. Furthermore, model-processed data or output can be presented in many visual forms, such as graphs and maps in support of management decision-making.

The Coming Fusion

With this background, it is easy to appreciate the fusion of machines, sensors and models. In the coming revolution, there will be a virtual “command” center running farm operations. Sensors flying on aircraft and satellites overhead in conjunction with those judiciously placed in fields and on tractors will measure physical, chemical and biological properties important to crop production. These sensor-based measurements will be converted to electronic signals and transmitted by radio to the command center. Base computers located in the center will receive the transmitted signals and deliver the data embodied in them via the Internet to models in the cloud. The models will process the data and pass back products in the form of tables, graphs and maps, depicting the state and changes in environmental and biological phenomena impacting crop development and growth. The same models will pass back recommendations on courses of action given status of the phenomena monitored in the field.

For example, a plant epidemiological model, inputting data collected in a field, may predict the incidence and severity of a disease important to crop yield. The model may recommend the timing and amount of a fungicide to minimize yield loss and control the spread of the disease. A farm manager would review the model-generated products and recommendation, and then choose a control tactic based on past experience and the available resources on hand.

If the choice is a fungicide as recommended by the model, a precision agriculture program could generate a variable-rate application map. This map would specify the rates of a chosen fungicide to be applied on a field according to the pattern of disease interpreted from sensor data. The variable-rate application map could be delivered wirelessly to spray equipment and, with GPS, guide the proper placement of the fungicide across a field. The fungicide application would change the progress of the disease, which would be indirectly monitored by sensor-recorded, environmental conditions. In a continuous cycle of sensed data, model processing of data and the incorporation of model products into precision agriculture programs, information would be generated to support management decision making during a growing season.

As precision agriculture evolves, it will play an important role in driving the demand for the fusion of machine, sensors and models. It will provide programs that allow a farm manager to act on model products. The same programs will support management decisions by guiding the operations of machines.

The new tech development reported in this issue represents small steps toward the realization of this fusion. With each new development, precision agriculture, along with machines, sensors and models, will increasingly provide decision-makers with information at an unprecedented scale and level of detail.

Leave a Reply

3 comments on “The Future Fusion Of Machines, Models And Sensors In Precision Agriculture

Data Management Stories
Google-Earth-Map-featured-image
Data ManagementRainfall Revisited: Accurate Observations and Beyond
September 18, 2018
As a provider of weather analysis and forecast services to the agricultural industry, one of the most common questions I Read More
Soil-Hand
Data ManagementAre You Using Your Soil to Its Full Potential?
September 14, 2018
Harvest is progressing across most parts of the U.S. and those growers who aren’t already harvesting are gearing up to Read More
Tablet Grower
Data ManagementThe Power of Predictive Analytics in Agriculture
September 5, 2018
Years ago if we would have been told computers, data, and technology would be scattered around every farm there may Read More
AmericasOn The Scene: 2018 Farm Progress Show Wrap Up
September 5, 2018
Former Monsanto President (now Bayer CropScience Chief Operating Office) Brett Begemann’s opening salvo during his first appearance at a Farm Read More
Trending Articles
Soil-Hand
Data ManagementAre You Using Your Soil to Its Full Potential?
September 14, 2018
Harvest is progressing across most parts of the U.S. and those growers who aren’t already harvesting are gearing up to Read More
Grower-Retailer
Imagery/SensingAgtech: 10 Things I Hate About You!
September 4, 2018
Before you get bent out of shape from the title, remember if you’ve read my articles before you know I Read More
Kansas State University
Industry NewsKansas State University, Topcon Form Precision Ag Research Partnership
August 30, 2018
Kansas State University and Topcon Agriculture are collaborating to develop tools and systems to advance precision agriculture and support farmers. Read More
Blockchain building block graphic
Specialty CropsIs Blockchain the Future of Food Safety?
August 24, 2018
When the Internet Protocol Suite (TCP/IP) was standardized in 1982, permitting the worldwide proliferation of interconnected networks and eventually the Read More
WinField’s Joel Wipperfurth On Empowering Data-Driven Decisions
InfoAg ConferenceOne on One with Joel Wipperfurth, Winfield United
August 15, 2018
Winfield United's Joel Wipperfurth discusses ag technology trends and topics during last month’s InfoAg Conference. Read More
Geosys
Industry NewsUrtheCast to Acquire Geosys from Land O’Lakes in $20 Million Deal
August 15, 2018
UrtheCast Corp. and Land O’Lakes, Inc. today announced they have entered a binding term sheet for the purchase of Geosys Read More
Latest News
Business ManagementIvy Tech, Farmers Partner to Help Precision Ag Educatio…
September 20, 2018
Harvest time has taken on a new meaning for some Wabash Valley farmers, and Bobbi Hunt-Kincaid hopes her family’s first Read More
Sensors
Sensors/IoTThe Answer to Agriculture’s Daunting Challenges – Soil …
September 20, 2018
According to the United Nations, 9.6 billion people will live on planet Earth by 2050. Feeding these mouths will require Read More
Google-Earth-Map-featured-image
Data ManagementRainfall Revisited: Accurate Observations and Beyond
September 18, 2018
As a provider of weather analysis and forecast services to the agricultural industry, one of the most common questions I Read More
PenelopeNagel
Business ManagementWhy Is Funding a Challenge for Women-Led Agtech Compani…
September 17, 2018
When it comes to women-led agtech companies the funding discussion never seems to cease. In June after the The New Read More
Mobile Phone in field
Decision Support SoftwareWhy Are 570 Million Farmers Not Yet Using Agricultural …
September 17, 2018
Until recently, using agricultural apps and software was a rare practice among growers. This is now changing. The mass adoption Read More
Soil-Hand
Data ManagementAre You Using Your Soil to Its Full Potential?
September 14, 2018
Harvest is progressing across most parts of the U.S. and those growers who aren’t already harvesting are gearing up to Read More
Grower Services & SolutionsDeere-Granular Collaboration Produces New Profit Maps T…
September 14, 2018
The newest development from the ongoing John Deere-Granular product development and marketing collaboration is Profit Maps, now available to farmers Read More
Wingtra
DronesOpinion: Combining Two Pluses with the WingtraOne UAV
September 13, 2018
For the every-day consumer interested in UAVs, there is an ocean of products from which to choose. This includes the Read More
Farmer-tablet
AsiaShould Agri-Input Manufacturers Outsource E-Commerce to…
September 12, 2018
Editor’s note: Venky Ramachandran is a contributing writer for PrecisionAg.com’s sister site, AgriBusinessGlobal.com. This article was originally published on LinkedIn. Now, Read More
ICON-Link-Licensing_featured-image
Industry NewsValley Irrigation Adds Remote Irrigation Management Opt…
September 11, 2018
Valley Irrigation, an industry leader in smart irrigation solutions, has announced enhancements to its remote management technologies. Multi-Year Licensing In Read More
Reflex-Connect-Agri-Inject-featured-image
Variable Rate ApplicationVariable Rate Fertigation System Expands with Mobile Co…
September 10, 2018
Building on the success of its Reflex Variable Rate Fertigation system, Agri-Inject has taken fluid injection to the next level Read More
Industry NewsTeralytic Earns Ag Data Transparent Certification
September 10, 2018
Soil analytics company Teralytic has completed the Ag Data Transparent certification, affirming that their data use is private, secure, and Read More
Business ManagementTop 20 Two-Year Colleges for Precision Agriculture
September 10, 2018
Earlier this year, I compiled a list of the 25 best colleges for precision agriculture. It was quite the process. Read More
Industry NewsRaven, Topcon Announce Slingshot API Agreement
September 6, 2018
Raven Industries and Topcon Agriculture announced today a licensing agreement for Topcon Agriculture’s use of the Slingshot Application Programming Interface Read More
Tablet Grower
Data ManagementThe Power of Predictive Analytics in Agriculture
September 5, 2018
Years ago if we would have been told computers, data, and technology would be scattered around every farm there may Read More
DronessenseFly Launches eBee X Drone, Breaks Through 1,000 ac…
September 5, 2018
senseFly today reportedly sets a new standard in mapping tools with the launch of the eBee X. Launched with the Read More
AmericasOn The Scene: 2018 Farm Progress Show Wrap Up
September 5, 2018
Former Monsanto President (now Bayer CropScience Chief Operating Office) Brett Begemann’s opening salvo during his first appearance at a Farm Read More
EventsAg Experts Discuss Big Data Challenges in Agriculture
September 5, 2018
Agricultural experts at a Houston conference praised the advancements in unmanned aerial vehicles, sensors, and data-collecting technology used in precision Read More