How Machine Learning Plus Weather Information Can Help Us Feed the World

The world of technology-based solutions has been increasingly flooded with buzzwords like “analytics”, “big data”, and “Internet of Things”. In the past few years, the availability of cost-effective, large-scale cloud computing and open-source scientific programming libraries has led to the proliferation of “machine learning”, “artificial intelligence”, and similarly named services that essentially promise to turn your data into actionable information or insights.

Having spent most of my career working with large, diverse meteorological datasets and developing software for automated weather forecasting and decision support, I am always intrigued by new ways of applying the latest technology to my domain. The challenges in precision agriculture and their intersection with weather and soil conditions are what led me into where I am today. I am using this month’s column to shed some insight on where I see machine learning (ML) techniques bringing the most value to weather-sensitive operations in agriculture.

Unfortunately, what I see happening are lots of enthusiastic and brilliant data scientists, armed with powerful tools and access to amazing computational resources, charging off to solve problems for which they have little or no practical knowledge, believing that given enough data they can solve any problem in any data-rich domain. I appreciate that enthusiasm, and welcome the help in meteorology and agriculture, but want to make sure we attack the right challenges with the right tools, without expending much effort reinventing slightly better wheels while promising flying cars.

ML systems are becoming high-powered jackhammers in the buzz of the marketplace. And when then the one tool in your belt is a hammer…well, I don’t need to pound that analogy in again. As we try to leverage technology in agriculture to feed the world, the last thing we need are disappointing results in a world of high expectation that lead to distrust and slower adoption of truly useful solutions. But jackhammers are important when they are needed and have many applications – as is the case with ML.

You might be surprised to know that the use of ML in meteorology is not new at all. Weather really is the original “big data” problem before it existed as a buzzword. Operational forecast services in both government and the private sector have employed various ML methods for decades as part of data analysis and automated prediction, but not as a standalone tool in the sense that most people might think of, whereby a bunch of historical data gets put into a magical, ML “black box” resulting in a capability to simply forecast the future from past data.

In a previous article I explained the various forecast techniques and their applicability to different time scales of prediction. None of those techniques are foundationally ML based, but most of them employ ML as part of the process, whether it be to find and remove erroneous input data, adjust the final output of a physical model based on past performance, or to optimally combine multiple pieces of information into better weather intelligence.

For example, neural networks have been employed to allow improved quality control of raw radar data, helping to remove false echoes that a human analyst can readily recognize but is much more difficult to do in an automated fashion. These false echoes can lead to bad precipitation estimates.

As another example, our company has long used an internally developed multi-model ensemble forecast system where each individual model is compared with recent ground truth data, corrected for biases and then blended with other models using a dynamic weighting scheme to arrive at the best forecast. This helps us produce very reliable, probabilistic precipitation forecasts that are suitable for objective decision making.

As mentioned in my earlier article, the physics-based numerical weather prediction models have been, and for the foreseeable future will continue to be, the primary tool for forecasting the next few hours to weeks of weather. Any attempt to use pure ML techniques as an alternative, rather than a supplement, to these models would be an inefficient use of talent and resources, in my opinion. ML techniques may offer more promise in longer range, such as seasonal and longer outlooks, but I remain skeptical of the value of those for real-world, agricultural decision making, and there may be a practical limit in forecasting regardless of technique, ML or otherwise.

Where I think we can reap large benefits from ML is in the use of diagnostic and predictive analytics of weather impacts. That is, the response in grower behavior, plant or product performance, or pathogens that is likely related to multiple elements of the weather and/or other inputs, but where those interdependencies are not fully understood.

Even if we had perfect weather data everywhere all the time, there are many more uncertainties in a lot of the weather-driven agronomic models that attempt to predict crop stage, disease pressure, and crop performance, and variability due to regional and genetic differences make phonological modeling difficult. Additionally, things that have behavioral inputs, such as a producer’s response to certain conditions, or migratory patterns of pests, cannot be simply turned into equations. In these cases, ML offers high potential to add tremendous value.

For example, one of my colleagues has been working on applying artificial intelligence to crop modeling. Using a neural network method to combine a large dataset of crop stage observations with high-quality, temporally and spatially consistent weather and soil information for the field, he demonstrated a capability to generate a predictive crop model for use in stage-dependent field operations.

Another example where my colleagues have applied ML techniques is in determining how accessible a field is for equipment to help producers make informed decisions about moving equipment when managing geographically dispersed field. The challenge in this case is that what is considered workable by one grower with his particular equipment can be much different than another, even in the same area, and the system may not know anything about the grower’s behavior or equipment. Thus, a method of accepting feedback on the operator’s assessment of field conditions is used in a ML system to train the model to the particular operator’s preferences on a field-by-field basis over time, continually improving the automated assessments.

Those examples were made enabled by two things. First, having a team of people, experts in their particular relevant field, working closely with a data science expert is critical. Each expert brings something valuable to the table, learning from each other about the nuances of the operational problems, the kinds of data (and their nuances) available for use, and insights into where to focus efforts. I cannot emphasize this enough: a cross-disciplinary approach, bringing relevant domain expertise into any technology solution development is key.

Second, the availability of usable data for training the ML techniques is critical. This may be the largest challenge we face in precision agriculture, as we continue to struggle with standardization of data exchange protocols and a generalized fear of sharing. We have to work together to protect data in a way that keeps the owner comfortable while benefiting the industry as a whole. This is all possible today, but we have to overcome barriers that have only been strengthened by recent, highly publicized abuses of end user information collected by consumer applications.

When it comes to mitigating losses and enhancing production through better weather and soil analytics, the best solutions will come from teams of atmospheric, agronomic, soil, and data scientists working with tech-savvy agribusinesses and producers. It’s important to not get distracted by buzzwords, and instead make sure the right people are using the right tools to solve the right problems, and then feel good about sharing relevant data that can help us collectively feed the world more efficiently.

Leave a Reply

Data Management Stories
Hurricane-Florence-Map-featured-image
Data ManagementMythbusting: Is Weather More Unpredictable Due to a Changing Climate?
October 16, 2018
There are some commonly spoken narratives that are actually false, at least as stated in the exact words used, that Read More
Sentinel-1
Data ManagementSatellites Key in Providing Agriculture’s Next Generation of Data
September 27, 2018
With a range of extreme-weather events currently playing out across the globe, from floods on the east coast of the Read More
AmericasFarmers Edge Announces New Retail-Facing Precision Ag Platform
September 25, 2018
Farmers Edge announced the launch of a new solution designed exclusively for agricultural professionals to enhance their relationships with customers Read More
Google-Earth-Map-featured-image
Data ManagementRainfall Revisited: Accurate Observations and Beyond
September 18, 2018
As a provider of weather analysis and forecast services to the agricultural industry, one of the most common questions I Read More
Trending Articles
Mike-Gomes
PrecisionAg InstituteOne on One with Mike Gomes, Topcon
October 15, 2018
Mike Gomes of Topcon Precision Agriculture joins Paul Schrimpf, Group Editor of PrecisionAg Professional magazine, for a discussion of key Read More
PrecisionAg InstitutePrecisionAg Institute Whitepaper Library
October 1, 2018
Welcome to the PrecisionAg Institute Whitepaper library! Here you will find free whitepapers and case studies from the PrecisionAg Institute Partners Read More
Sensors
Sensors/IoTThe Answer to Agriculture’s Daunting Challenges – Soil Sensors
September 20, 2018
According to the United Nations, 9.6 billion people will live on planet Earth by 2050. Feeding these mouths will require Read More
Soil-Hand
Data ManagementAre You Using Your Soil to Its Full Potential?
September 14, 2018
Harvest is progressing across most parts of the U.S. and those growers who aren’t already harvesting are gearing up to Read More
Grower-Retailer
Imagery/SensingAgtech: 10 Things I Hate About You!
September 4, 2018
Before you get bent out of shape from the title, remember if you’ve read my articles before you know I Read More
Kansas State University
Industry NewsKansas State University, Topcon Form Precision Ag Research Partnership
August 30, 2018
Kansas State University and Topcon Agriculture are collaborating to develop tools and systems to advance precision agriculture and support farmers. Read More
Latest News
PrecisionAg Vision Conference
EventsDon’t Fret About the Future – the 2019 VISION Co…
October 22, 2018
If you, like me, have been fortunate to witness what Land O’ Lakes CIO Mike Macrie has called the two Read More
rivkaGarcia_FarmsToIncubators_1kpx
Events‘From Farms to Incubators’ Documentary High…
October 18, 2018
“From Farms to Incubators: Telling the stories of minority women entrepreneurs in agtech in the Salinas Valley and beyond” will Read More
ConceptsInAction
Service ProvidersPutting Agronomic Advice Into Action – A Full-Season Fi…
October 17, 2018
It’s one thing to read, write, or know about helping customers best manage their fields – it’s another to put Read More
Hurricane-Florence-Map-featured-image
Data ManagementMythbusting: Is Weather More Unpredictable Due to a Cha…
October 16, 2018
There are some commonly spoken narratives that are actually false, at least as stated in the exact words used, that Read More
Pix4Dfields_usecase_prunes_farm
DronesEnhance Your Agriculture Workflow in Less Than 30 Minut…
October 15, 2018
Prunes are European plums with a high sugar content that allows them to dry without fermenting around the pit and Read More
Winfield
PrecisionAg InstitutePartner Profile with Winfield United
October 15, 2018
Joel Wipperfurth of Winfield United discusses ag technology trends and topics during the 2018 InfoAg Conference. Read More
Fetters
PrecisionAg InstitutePartner Profile with Simplot Grower Solutions
October 15, 2018
Allan Fetters of Simplot Grower Solutions discusses ag technology trends and topics across the industry, and within the company, during Read More
Chappell
PrecisionAg InstituteEncouraging Employees to Think Into the Future is Winni…
October 15, 2018
EFC Systems CEO Ernie Chappell says his company is always looking ahead to understand growers’ future needs. “It’s not just Read More
Raven-SDSU
PrecisionAg InstitutePartnership with SDSU is One Way Raven Industries Advan…
October 15, 2018
Raven Industries’ partnership with South Dakota State University allows the company to work closely with students and staff to advance Read More
Proagrica
PrecisionAg InstituteOne on One with Kirk Appleford, Proagrica
October 15, 2018
Kirk Appleford joins Paul Schrimpf at the 2018 InfoAg Conference to talk about current ag trends, and Proagrica’s recent acquisition Read More
ESRI
PrecisionAg InstituteOne on One with Charlie Magruder, ESRI
October 15, 2018
Charlie Magruder joins Paul Schrimpf for a discussion of current trends in technology that are impacting ESRI, including news from Read More
Shane-Swedlund
PrecisionAg InstituteOne on One with Shane Swedlund, Raven Industries
October 15, 2018
Shane Swedlund of Raven Industries joins Paul Schrimpf at the 2018 InfoAg Conference to share some key learnings from the Read More
Mike-Gomes
PrecisionAg InstituteOne on One with Mike Gomes, Topcon
October 15, 2018
Mike Gomes of Topcon Precision Agriculture joins Paul Schrimpf, Group Editor of PrecisionAg Professional magazine, for a discussion of key Read More
Ernie-Chappell-and-Paul
PrecisionAg InstituteOne on One with Ernie Chappell, EFC Systems
October 15, 2018
Ernie Chappell of EFC Systems joins Paul Schrimpf, Group Editor of PrecisionAg Professional magazine, to talk about topics and trends Read More
Auto-Thinner
Robotics/Labor SaversPrecision Agriculture in Specialty Crops: Labor, Cost S…
October 9, 2018
Agriculture is going through an equivalent of what the computer industry went through in the 1970s and 1980s. That’s when Read More
Growing-Innovations-logo
EventsA Crazy 2018 is Why We Need Growing Innovations
October 8, 2018
If you’re here you likely have received a special Meister Media Worldwide code to get $100 off your registration to Read More
AmericasConBAP 2018 Highlights Precision Agriculture in Brazil
October 8, 2018
The Brazilian Congress of Precision Agriculture 2018 (ConBAP 2018) was held October 2-4 in Curitiba, Paraná. Held every two years, Read More
GAR-Tootelian-Sensor
Service ProvidersGar Tootelian: Putting Ag Technology to the Test
October 8, 2018
In California’s Central Valley, a diverse crop market in which Pest Control Advisors (PCAs) are the dominant players when it Read More