Big Data & Precision Agriculture

GreenSeeker Sensor System

There is new term creating a lot of excitement in technological and scientific circles. It is “big data.” Big data refers to the generation of enormous amounts of data due to new technologies for measurement, collection and storage. Data are accumulated in such vast quantities that they defy conventional analysis techniques. As we will see, big data offers great opportunities but also major challenges. Before discussing how big data will impact precision agriculture, it may be instructive to learn how it has impacted another field which literally redefines itself through continuous observations.

The field of astronomy during the past two decades has undergone a rapid improvement in the ability of telescopes to collect data. If we assume that all data can be defined in terms binary digits or “bits,” then we can calculate how much data are in an image, book or table. This is because we can construct bytes from bits which numerically define colors, letters and numbers. The bigger a telescope is for making observations, the more data are collected in the same interval of time. The greater the density of picture elements or pixels in the same viewing area of a telescope, the more data are collected in the same interval of time. The faster the recording of images in a telescope of the same size and pixel density, the more data are collected in the same interval of time. With each new telescope launched into space or constructed on the ground, there has been acceleration in data realization.

The improvement in telescopes along with their “big data” capabilities is best illustrated through examples. The popular, exoplanet-hunting Kepler telescope, launched by the U.S. National Aeronautics and Space Administration (NASA), has a density of 95 million pixels with the capability to sum imaged data over 30-minute intervals. The Kepler telescope can precisely measure the light emitted from over 100,000 stars. This periodic tracking of stars has increased the number of known exoplanets from in the tens to in the thousands. The Atacama Large Millimeter Array (ALMA) is an international collaboration of ground-based, radio telescopes to observe galaxies, stars and planet formation. It began generating 40 terabytes of data per day when it became fully operational this year. The Large Synoptic Survey Telescope (LSST), a public-private partnership, has a 3-billion pixel density. It will be able to image an area of the sky that is 49 times the size of the Moon when it becomes operational in 2015. It has been estimated that there is now a doubling every year in the amount of data being collected in the field of astronomy.

The exponential growth of data requires new thinking on how to look at data. Today, it is humanly impossible to look at all but a tiny portion of astronomical data using conventional analysis. Consequently, in place of humans, computer programs conduct comparative analysis on large stores of data. Through a step-by-step procedure of calculations and/or comparisons, programs in the form of algorithms reveal patterns in large data sets. For example, in the case of the Kepler telescope, the tell-tale variation in light from a star reveals the presence of an orbiting exoplanet. A computer program can identify this variation with an algorithm and conduct an analysis of a star’s extended time series in the blink of an eye. While new telescopes are generating “astronomical” amounts of data, new algorithms are being written to analyze these data.

New Ways Of Thinking Needed

While agriculture is a latecomer to the big data phenomenon, it will soon follow a similar path as astronomy. Precision agriculture, with its time-dependent, geospatial data at the field scale, will be front and center in the realization of big data in agriculture. As sensors are placed on machinery, arrayed in soils and canopies and flown remotely overhead, the amount of data collected in the field will increase geometrically. As was the case in astronomy, it will be become humanly impossible to analyze data collected in an agricultural setting. And like in the field of astronomy, computer programs will be relied upon to conduct nearly all the analyses of large data sets.

Big data by its sheer volume of information offers a number of opportunities for precision agriculture. At the most rudimentary level, ingested data can be analyzed in real-time to flag critical values important for production decision-making. At a more sophisticated level, high resolution spatial maps of soil moisture can direct the efficient use of irrigation. Similarly, detailed maps of pest damage can allow for the precise targeting of controls in a field. At the most advanced level, remote-sensed data coupled with measurements made with sensors on machines or arrayed on the ground can be processed to create a dynamic, three-dimensional picture of soil, plant and environmental properties in a field. This picture would be composed of many layers of data, which singly or together can support specific management decisions.

The big data opportunities can be overshadowed by their challenges, especially in the early going. First, there are very few “data” scientists or persons who know how to create and execute the algorithms necessary for analyzing large of amounts of data. Second, there is commonly a mismatch in the scale, precision and accuracy of data coming from different sources. This mismatch can create an erroneous picture of what is actually happening in a field.

Third, big data, like all data, needs to be quality controlled before it is used in algorithms. The necessary quality control procedures can become pretty elaborate and time-consuming. The fourth and most important challenge is the interpretation of products created by algorithms processing large data sets. Interpretation of data patterns is very subjective. Every individual has their own way of looking at the world according to their beliefs, prejudices and preconceived notions of acceptable outcomes. Consequently, no two individuals will reach exactly the same decisions after interpreting big data patterns.

We can conclude that big data will increasingly become part of precision agriculture and will heavily influence our production decision-making in the not-too-distant future. We can also conclude that there will be a learning curve on the part of agricultural stakeholders making decisions based on big data.

The incorporation of big data in decisions, while challenging, may be one of the things precision agriculture needs to do to get back on a growth curve.

Leave a Reply

4 comments on “Big Data & Precision Agriculture

  1. Without any doubt and in a complete agreement with the article: "programs in the form of algorithms reveal patterns in large data sets". Certainly a big challenge is use in presicion farming area those tools coming from the multivariate statistics field.

  2. Without any doubt and in a complete agreement with the article: "programs in the form of algorithms reveal patterns in large data sets". Certainly a big challenge is use in presicion farming area those tools coming from the multivariate statistics field.

Data Management Stories
Sentinel-1
Data ManagementSatellites Key in Providing Agriculture’s Next Generation of Data
September 27, 2018
With a range of extreme-weather events currently playing out across the globe, from floods on the east coast of the Read More
AmericasFarmers Edge Announces New Retail-Facing Precision Ag Platform
September 25, 2018
Farmers Edge announced the launch of a new solution designed exclusively for agricultural professionals to enhance their relationships with customers Read More
Google-Earth-Map-featured-image
Data ManagementRainfall Revisited: Accurate Observations and Beyond
September 18, 2018
As a provider of weather analysis and forecast services to the agricultural industry, one of the most common questions I Read More
Soil-Hand
Data ManagementAre You Using Your Soil to Its Full Potential?
September 14, 2018
Harvest is progressing across most parts of the U.S. and those growers who aren’t already harvesting are gearing up to Read More
Trending Articles
PrecisionAg InstitutePrecisionAg Institute Whitepaper Library
October 1, 2018
Welcome to the PrecisionAg Institute Whitepaper library! Here you will find free whitepapers and case studies from the PrecisionAg Institute Partners Read More
Sensors
Sensors/IoTThe Answer to Agriculture’s Daunting Challenges – Soil Sensors
September 20, 2018
According to the United Nations, 9.6 billion people will live on planet Earth by 2050. Feeding these mouths will require Read More
Soil-Hand
Data ManagementAre You Using Your Soil to Its Full Potential?
September 14, 2018
Harvest is progressing across most parts of the U.S. and those growers who aren’t already harvesting are gearing up to Read More
Grower-Retailer
Imagery/SensingAgtech: 10 Things I Hate About You!
September 4, 2018
Before you get bent out of shape from the title, remember if you’ve read my articles before you know I Read More
Kansas State University
Industry NewsKansas State University, Topcon Form Precision Ag Research Partnership
August 30, 2018
Kansas State University and Topcon Agriculture are collaborating to develop tools and systems to advance precision agriculture and support farmers. Read More
Blockchain building block graphic
Specialty CropsIs Blockchain the Future of Food Safety?
August 24, 2018
When the Internet Protocol Suite (TCP/IP) was standardized in 1982, permitting the worldwide proliferation of interconnected networks and eventually the Read More
Latest News
Auto-Thinner
Robotics/Labor SaversPrecision Agriculture in Specialty Crops: Labor, Cost S…
October 9, 2018
Agriculture is going through an equivalent of what the computer industry went through in the 1970s and 1980s. That’s when Read More
Growing-Innovations-logo
EventsA Crazy 2018 is Why We Need Growing Innovations
October 8, 2018
If you’re here you likely have received a special Meister Media Worldwide code to get $100 off your registration to Read More
AmericasConBAP 2018 Highlights Precision Agriculture in Brazil
October 8, 2018
The Brazilian Congress of Precision Agriculture 2018 (ConBAP 2018) was held October 2-4 in Curitiba, Paraná. Held every two years, Read More
GAR-Tootelian-Sensor
Service ProvidersGar Tootelian: Putting Ag Technology to the Test
October 8, 2018
In California’s Central Valley, a diverse crop market in which Pest Control Advisors (PCAs) are the dominant players when it Read More
Spray Drift
Decision Support SoftwareHow Technology Can Help You Prevent Spray Drift
October 8, 2018
Spray drift. News articles about damage caused by spray drift seem to pop up regularly, almost as daily reminders, during Read More
UncategorizedTopcon, Kansas State Make it Official: Establish Resear…
October 4, 2018
Today, Topcon Agriculture and Kansas State University announced a comprehensive partnership, according to a news release issued by the University. Read More
AmericasIvy Tech Students, Helena Collaborate on ‘The Fie…
October 4, 2018
Students in Ivy Tech Community College’s Agriculture and Precision Agriculture programs have had an interesting opportunity this growing season to Read More
Industry NewsSDSU to Host Precision Ag Bowl, Raven Facility Grand Op…
October 3, 2018
South Dakota State is the first university in the nation to offer a four-year degree in precision agriculture. This Saturday, Read More
Industry NewsProagrica: Connectivity in the Agriculture Supply Chain…
October 2, 2018
A recent survey of US ag retail businesses from Proagrica showed that future-proofing is one of the dominant pain points Read More
Thad-Becker
Business ManagementMFA: Mainstreaming Precision Ag Services
October 1, 2018
There’s no ironclad approach to building business through a precision program offering. There are as many nuanced approaches to success Read More
PrecisionAg InstitutePrecisionAg Institute Whitepaper Library
October 1, 2018
Welcome to the PrecisionAg Institute Whitepaper library! Here you will find free whitepapers and case studies from the PrecisionAg Institute Partners Read More
corn field
Industry NewsMFA Inc. Announces Expanded Partnership with Adapt-N
October 1, 2018
MFA Inc. has announced an expanded partnership between its Precision Advantage, Crop-Trak, and Nutri-Track service platforms and the Adapt-N nitrogen Read More
IBM-Watson
Industry NewsIBM to Launch Watson Decision Platform for Agriculture
October 1, 2018
When you think about artificial intelligence (AI), you probably don’t imagine using it for a farm. IBM is bringing data Read More
Aquaoso
Decision Support SoftwareNew Software Monitors Water Risk for California Agricul…
September 28, 2018
AQUAOSO Technologies PBC, a software company that helps customers identify, understand, and monitor water supply risks has officially unveiled their Read More
Sentinel-1
Data ManagementSatellites Key in Providing Agriculture’s Next Generati…
September 27, 2018
With a range of extreme-weather events currently playing out across the globe, from floods on the east coast of the Read More
Satellite
AmericasArgentina Bets on $600m Satellite to Boost Agriculture …
September 25, 2018
Argentina is launching a new microwave imaging satellite to monitor natural disasters and soil moisture, in a long-term bid to Read More
AmericasFarmers Edge Announces New Retail-Facing Precision Ag P…
September 25, 2018
Farmers Edge announced the launch of a new solution designed exclusively for agricultural professionals to enhance their relationships with customers Read More
FIRA
EventsAgricultural Robotics Take Center Stage at FIRA 2018
September 24, 2018
The future of agricultural innovation will continue to rely heavily on collaboration and exchange of ideas among all industry players. Read More