The Future Fusion Of Machines, Models And Sensors In Precision Agriculture

There is a quiet, technical revolution occurring in agriculture that is going to impact the field of precision agriculture in the very near future. Lacking good terminology, I will call this revolution the “fusion” of machines, sensors and models. This fusion is being borne out of the explosion of data being realized through the integration of information, computer and communication technologies with traditional hardware and analytical thinking. It is going to affect the very nature of decision-making in crop management and every device and machine engaged in field production. Before elaborating on the “fusion,” I will briefly review the individual evolution of machines, sensors and models.

Since the beginning of agriculture, man has sought devices, such as tools, pumps and plows, to improve the efficiency of crop production while reducing labor and conserving resources. These devices were first operated by hand, later pulled by animals, and lastly powered by engines. The transformation of agriculture by machines in just the last 100 years has been truly amazing. As reported in a 2005 USDA bulletin entitled “The 20th Century Transformation of U.S. Agriculture and Farm Policy,” about 41% of the workforce — 22 million work animals and a few, newly invented, gasoline-powered tractors — were involved in agriculture at the start of the 20th century. By the start of the 21st century, slightly less than 2% of the workforce, 5 million tractors and a few work animals were active in agriculture. During this 100-year transformation, the number of farms in agriculture decreased by 63% while the average farm size increased by 67%.

Sensor Upgrades

A sensor is a device that converts a physical stimulus into an action or signal. Sensors have a history of development similar to machines. Beginning as simple devices that recorded a change in sound, motion, heat, pressure, light or other physical phenomena, sensors quickly evolved over the last 100 years into sophisticated arrays and networks. Sensors are ubiquitous in everyday life. They automatically open entrance doors in businesses, control lighting and heating in homes, detect the amount of fuel in cars and set off alarms in case of fire or gas leaks. Sensors can be placed locally or be remote, such as on aircraft or satellites.

Several recent advances have made sensors more applicable to agriculture. First, they have been coupled with radio communication. Today, a sensor placed in the field can measure some physical phenomenon, convert that measurement into an electronic signal and then transmit that signal with electromagnetic waves in the radio frequencies to a distant base station. This sensed measurement and its transmission by radiowaves can be done automatically, freeing up the need for someone to be on-site to retrieve recorded data.

The second advance in sensors is miniaturization. Sensors are gradually becoming smaller and smaller while still performing as their larger counterparts. Miniaturization is possible due to the use of new materials that require less volume, reduction in the size of electronic circuits and the exploitation of newly discovered physical, chemical and biological properties. Miniaturization, at or below the molecular scale, is called nanotechnology.

A third advance is the efficiency and cost reduction in the manufacturing of sensors. Sensors are becoming cheaper to make, which allows for more of them to be placed in the field at the same cost.

The fourth and last advance is the ability to combine sensors in networks. Sensor networks through their measurement and transmission of signals in spatial arrays over time can create a dynamic, two-dimensional and even a three-dimensional picture of some physical phenomenon.

A model is the mathematical representation of the physical world. Through parameters and equations, models mimic or “simulate” the properties and processes of some physical system. Models have existed on paper for more than 100 years, but their modern-day identity is linked to computers. Computers, through program code and machine instructions, can computationally execute the mathematical equations defining a model many times faster than a human can do by hand. Computer-based models can input and process data at mind-boggling rates. Furthermore, model-processed data or output can be presented in many visual forms, such as graphs and maps in support of management decision-making.

The Coming Fusion

With this background, it is easy to appreciate the fusion of machines, sensors and models. In the coming revolution, there will be a virtual “command” center running farm operations. Sensors flying on aircraft and satellites overhead in conjunction with those judiciously placed in fields and on tractors will measure physical, chemical and biological properties important to crop production. These sensor-based measurements will be converted to electronic signals and transmitted by radio to the command center. Base computers located in the center will receive the transmitted signals and deliver the data embodied in them via the Internet to models in the cloud. The models will process the data and pass back products in the form of tables, graphs and maps, depicting the state and changes in environmental and biological phenomena impacting crop development and growth. The same models will pass back recommendations on courses of action given status of the phenomena monitored in the field.

For example, a plant epidemiological model, inputting data collected in a field, may predict the incidence and severity of a disease important to crop yield. The model may recommend the timing and amount of a fungicide to minimize yield loss and control the spread of the disease. A farm manager would review the model-generated products and recommendation, and then choose a control tactic based on past experience and the available resources on hand.

If the choice is a fungicide as recommended by the model, a precision agriculture program could generate a variable-rate application map. This map would specify the rates of a chosen fungicide to be applied on a field according to the pattern of disease interpreted from sensor data. The variable-rate application map could be delivered wirelessly to spray equipment and, with GPS, guide the proper placement of the fungicide across a field. The fungicide application would change the progress of the disease, which would be indirectly monitored by sensor-recorded, environmental conditions. In a continuous cycle of sensed data, model processing of data and the incorporation of model products into precision agriculture programs, information would be generated to support management decision making during a growing season.

As precision agriculture evolves, it will play an important role in driving the demand for the fusion of machine, sensors and models. It will provide programs that allow a farm manager to act on model products. The same programs will support management decisions by guiding the operations of machines.

The new tech development reported in this issue represents small steps toward the realization of this fusion. With each new development, precision agriculture, along with machines, sensors and models, will increasingly provide decision-makers with information at an unprecedented scale and level of detail.

Topics:

Leave a Reply

Your email address will not be published. Required fields are marked *

2 comments on “The Future Fusion Of Machines, Models And Sensors In Precision Agriculture

Data Stories
A Satshot NDVIR analysis running on an iPad.
BusinessSatshot’s Landscout IOS Now API Linked With John Deere Operations Center
September 28, 2016
Satshot’s Landscout IOS mobile software is now connected with the John Deere Operations Center through John Deere’s API services. Landscout Read More
Ag Drone
BusinessDroneDeploy Launches Turbo Uploader
September 27, 2016
DroneDeploy today announced a new solution that addresses drone data portability challenges in remote areas that have Internet bandwidth constraints. Read More
FUSE Farm Graphic
DataAGCO Is Founding Member Of The DKE Data-Hub Initiative
September 26, 2016
AGCO Corp., a world-leading manufacturer and distributor of agricultural equipment, has announced its participation as a founding member of the DKE Read More
BusinessADAPT Conversion Toolkit Making In Roads With Equipment Manufacturers
September 22, 2016
A leading group of equipment manufacturers will soon release products that greatly enhance a grower’s ability to manage data across Read More
Trending Articles
Business2016 Farm Science Review: Talkin’ New Products, Education and Big Data
September 21, 2016
The Ohio State University’s Farm Science Review has become an annual rite of fall for Buckeye State growers, retailers and Read More
Mitchell Technical Institute students with drone
IntegratorsMTI Precision Ag Students Use Drone Technology
September 19, 2016
After weeks of sitting in the classroom, several Mitchell Technical Institute students were able to spend a few hours outside Read More
Robotics AGCO Fendt Guide Connect
Market ImpactReport: Ag Robots And Drones May Be A $10 Billion Market By 2022
September 7, 2016
Robots and drones have begun to quietly transform many aspects of agriculture. In fact, the IDTechEx Research report on Agricultural Read More
SDWG Bret Weisenburger
BusinessMZB Technologies, Climate FieldView Announce Data Integration for 2017 Season
September 6, 2016
MZB Technologies announces a data connectivity agreement with The Climate Corporation, a subsidiary of Monsanto Co., providing increased precision agriculture Read More
Deere R4023 cab
BusinessReport: Smart Agriculture Market Worth $19 Billion By 2021
September 6, 2016
Research and Markets has announced the addition of the “Smart Agriculture Market – With Forecast (2016-2021)” report to their offering. Read More
SDWG Bret Weisenburger
IntegratorsThe Top 10 People In Precision Agriculture
August 15, 2016
Precision agriculture — with all its wacky technologies and advanced algorithms and such — remains a people business. So, without Read More
Latest News
A Satshot NDVIR analysis running on an iPad.
BusinessSatshot’s Landscout IOS Now API Linked With John …
September 28, 2016
Satshot’s Landscout IOS mobile software is now connected with the John Deere Operations Center through John Deere’s API services. Landscout Read More
Ag Drone
BusinessDroneDeploy Launches Turbo Uploader
September 27, 2016
DroneDeploy today announced a new solution that addresses drone data portability challenges in remote areas that have Internet bandwidth constraints. Read More
FUSE Farm Graphic
DataAGCO Is Founding Member Of The DKE Data-Hub Initiative
September 26, 2016
AGCO Corp., a world-leading manufacturer and distributor of agricultural equipment, has announced its participation as a founding member of the DKE Read More
Ian Yule, ISPA
ResearchLeading Ag Technology Researcher Appointed ISPA Preside…
September 26, 2016
Massey University’s Professor Ian Yule, one of the world’s leading agri-tech researchers, has been voted president of the International Society Read More
BusinessADAPT Conversion Toolkit Making In Roads With Equipment…
September 22, 2016
A leading group of equipment manufacturers will soon release products that greatly enhance a grower’s ability to manage data across Read More
Business2016 Farm Science Review: Talkin’ New Products, Educati…
September 21, 2016
The Ohio State University’s Farm Science Review has become an annual rite of fall for Buckeye State growers, retailers and Read More
Farmers Edge Truck
DataFarmers Edge Awarded $6.1M Investment From Sustainable …
September 21, 2016
Farmers Edge, a global leader in precision agriculture and independent data management solutions, has announced that it will receive $6,107,563 Read More
BusinessGMO Aphids to Battle Weeds? It’s Not as Far Fetch…
September 21, 2016
No, I am not talking about optimizing aphids for a global agricultural armageddon. That would be silly. I’m talking about Read More
Young Corn Field
Best PracticesNitrogen: The Key to Reducing Greenhouse Gas Emissions
September 20, 2016
Precision ag can play a key role in reducing agriculture’s impact on greenhouse gases by limiting the nitrogen rate. Read More
W. Wade Robey, Raven
Industry NewsRaven Adds New Director Of Engineering
September 19, 2016
W. Wade Robey, Ph.D., joined Raven Applied Technology in August 2016 as Director of Engineering. In this role, he leads Read More
Mitchell Technical Institute students with drone
IntegratorsMTI Precision Ag Students Use Drone Technology
September 19, 2016
After weeks of sitting in the classroom, several Mitchell Technical Institute students were able to spend a few hours outside Read More
BusinessOPINION: Climate Corp. is the Jewel in Bayer’s Monsanto…
September 15, 2016
PERSPECTIVE: Over the next few days and weeks in the ag media space the major players will examine this latest Read More
Sugarcane India
Market ImpactPlantations International Brings Precision Farming Tech…
September 14, 2016
Hong Kong-based plantation and farm management company Plantations International has announced it is moving its contact centre from the Indian Read More
Corn close up
Start-UpsLewis & Clark Ventures Raises $20 Million For Agric…
September 13, 2016
Lewis & Clark Ventures, a venture capital firm focused on Series A and B stage investments, has announced $20 million Read More
BusinessSentera Joins Forces With Another Drone Distributor
September 13, 2016
Sentera has signed an exclusive distribution agreement with Dynamic UAV Solutions North America, LLC, a new distributor in the commercial Read More
New Zealand agriculture
Market ImpactPrecision Ag Technology Helping New Zealand Agriculture…
September 12, 2016
New Zealand has an enormous opportunity to use technology as a means to support the economic growth of its agri Read More
Robotics AGCO Fendt Guide Connect
Market ImpactReport: Ag Robots And Drones May Be A $10 Billion Marke…
September 7, 2016
Robots and drones have begun to quietly transform many aspects of agriculture. In fact, the IDTechEx Research report on Agricultural Read More
EventsPrecisionAg Vision Conference: Find Your Future in Phoe…
September 7, 2016
As the summer winds down and harvest begins in earnest, the time for immersing ourselves in future planning is getting Read More