Imagery for Row Crops: How Did We Get Here?

Look around a bit, and you will find lots of information and ideas about when and how to use imagery for row crop management on the Internet. Whole books have been written about this subject, and lots of papers have been published. And, every imagery company has information available. Unfortunately, much of the Internet information is misleading or simply wrong.

In this article, we’ll go back to the drawing board and try to unravel some of the complexity by looking at how imagery has gotten to this point, where we are today, and what areas imagery will most likely fit in row crop management systems.

A Bit of History

Imagery in agriculture can be traced back to the Depression Era and the use of aerial photography in general. The earliest kinds of aerial photography were black-and-white photos taken of most agricultural areas from an aircraft using a mapping camera with panchromatic film. This kind of imagery began in the 1930s with the Soil Conservation Service. Pan imagery was useful to photo interpreters who looked for patterns, tones, shapes, sizes, textures, shadows, and other features in the pictures in association with other mapped information such as terrain maps. In fact, stereo photos were processed to produce such elevation and terrain maps.

These pan photos were most useful when the soils were exposed (no or little vegetation cover) and when the field was relatively dry at the surface. Based on what photo interpreters saw, lines were drawn to identify homogenous areas called soil management zones. With such soil zone maps, farmers then would decide what inputs should be applied to each zone.

In the 1940s, aerial color photography became available. These photos were really just an extension of what you see with your own eyes … but from a bird’s perspective. Then, features such as soil color became something that helped define the soil management zones better as they might change over time or from year to year.

If vegetation had emerged in a field of interest, then plant colors would show where the plants were healthy and where stress was occurring. Stressed plants might be more yellow than the normal green color. One might even see areas that are diseased.

Usually, all of these pan or color aerial photos came with map coordinates or clear references to features such as row numbers, so that you could walk out to a place where something unusual was seen in the aerial photo.

After World War II, a special kind of aerial photography was available to replace or supplement ordinary color photography. This was called false-color camouflage photography. Today, this kind of imagery is called color infrared imagery. The term “false” was used to indicate that the colors that you see in a color infrared photo are not the same as the “true” colors that you see in a natural color photo.

Enter Satellites

Starting with Landsat 1 in 1972, satellite-based imagery became available as digital images that have data that can be processed by software on a computer. In the beginning, these images were crude, featuring just four bands (green light, red light, red edge, and near infrared) with large pixels about 260 feet across for each pixel. And, the precision of the brightness scale was very limited — at most, 64 shades of gray. Nevertheless, this lead to a number of spectral indicator (index) formulas being used to combine digital imagery in two or more spectral bands.

One of the most popular and often abused kinds of indicator maps is NDVI. NDVI stands for Normalized Difference Vegetation Index. NDVI values are made from only two bands … red light and near infrared. If done correctly, an NDVI map will have numbers from -1 to +1. However, for soils and vegetation, the NDVI numbers are all positive … say from 0.1 to 0.9 or up to 1.0. These numbers then are represented on a map by colorization, using a rainbow of colors. But they really are just numbers. The colors in NDVI imagery can lead you to believe that something is wrong (a red color for low NDVI values) when there is nothing wrong at all.

Now there are several kinds of NDVI-like spectral index formulas and maps that you can get from your image vendor. Some are better at handing the issues associated with real NDVI maps, such as soil noise or the lack of sensitivity at the top of the NDVI scale. Some prefer to use green light instead of red light for making an NDVI map called a “Green NDVI” map.

Some now like to use red edge instead of red light to make an NDRE map (NDVI based on red edge and near infrared). The NDRE maps are often called a chlorophyll map, but this is really just another kind of overall vigor and plant density map.

More Frequency

In the early days, Landsat 1 was the only global operational digital four-band camera, and you could only get an updated image every 18 days — even less often if it was cloudy on that revisit day. Later, more Landsat satellites were put into operation so the revisit interval got better — today, that’s perhaps every eight days. Landsat resolution also improved.

Then, a whole host of commercial (not free like Landsat) Earth observation satellites came into operation. This created much better revisit opportunities. Also, the number of bands increased and the radiometric precision got better. Starting in 2016, free imagery from the European Space Agency’s Sentinel 2A system began its regular operations. This provided for revisits that are as often as every 10 days. With Sentinel 2B now in operation, the revisits are as short as every 5 days and even every 2 to 3 days if you happen to be in the overlap between orbits.

The launch of Sentinel two years ago delivered four bands that show 33-feet details … blue light, green light, red light, and near infrared solar radiation, which is the number of bands necessary to produce any of the usual spectral indicators such as NDVI, Green NDVI, NDRE, and others that are better for handling soil noise and saturation issues.

The Fit For Row Crops

Row crops, usually annual crops, require yearly planning and decisions on seed selection, field preparation, planting, irrigation (in some regions), management during early stages of growth, management during reproductive stages of growth, preparing for harvest, harvesting, and post-season preparations for the next year or cycle. This all involves lots of time in the field — boots on the ground — with tractors, implements, and equipment for each phase of the farming cycle.

All of these management activities are best done by having good and frequent information about the soils that are in the field of interest — hence why one of the most common uses of imagery is for soil mapping and defining soil zones.

Service providers and growers also want to know about how the crop is doing throughout the growing season. A lot of this information can be gathered by using direct sampling methods – taking soil and plant samples, and using in field sensors such as the Greenseeker for leaf and yield (harvester) information. In-field photos might already be a part of what you do when you go into the field. Imagery can be an integral part of scouting throughout the season.

With a new image being taken every few days, you can now watch your crop emerge, grow (in terms of NDVI-like “vigor” values), and mature as you approach harvest. And, the better spatial resolution of these data let you see small management units that need attention at that scale of precision farming. You might even see that some parts of an otherwise healthy crop are lagging behind or turning more yellow. We use these frequent revisits of great satellite data to map both vigor (a combination of biomass density, a.k.a., leaf area index, and leaf health) and leaf health (pigmentation) as a “second option.” Using two spectral index maps instead of just one can reveal spatial patterns that are not seen in one or the other.

Benefit-of-Two-Different-Perspectives-on-the-Same-Field

The image above provides an example of both a vegetation vigor index map and a pigmentation map for a set of fields in California.

If the vigor and pigmentation values are calibrated, then plots of these values for any field or place in a field will be useful for making maps of plant events or conditions such as emergence date (germination success), growth rates during vegetative growth stages, and changes during reproductive stages leading to being harvest ready. And, spatial patterns can indicate places of stress that you need to visit to determine what’s wrong and what needs to be done to fix the problem (if you can).

Solutions Coming to Every Field

Many satellite-based commercial companies too numerous to name are putting up relatively cheap satellites with multispectral cameras — even hyperspectral and/or thermal cameras — that will revisit at least every day and perhaps several times per day. This will make more reliable the notion that you can monitor the emergence, growth, and development of a crop of interest in a field of interest as often as every day, as often as every week for areas that are prone to be cloudy.

Such frequent revisits will also allow for better calibration of the data that so that change features can be derived from the time series of various spectral indices taken from the imagery. And, the spatial resolution of the imagery will be as good as 3 feet even for the various bands of blue light, green light, and red light — and perhaps red edge radiation and near infrared as well.

In the coming years, as we see the shift to the digital farm, data derived from imagery will persist in the overall farm management planning regimen. And the technology will be advancing, the prospects of what imagery analytics will yield in the future are exciting and the opportunities for improved decision-making will only get better.

One last thought about what will benefit the functionality of imagery: Using indices that are more bulletproof to the possibly confusing effects of foreground (sparse) vegetation. Spectral indices are most useful early in a season of growth when early patterns of health and stress are present — factors that affect potential yields (not actual yields, because in-season weather will have a significant future impact).

Optimizing the use of imagery really requires a team approach, with a trusted service provider working closely with grower-clients to ensure real problems are matched up with real solutions. The farmer will know what questions they want answered on their farm, and as the service provider you can advise as to whether imagery might help answer those questions.

Leave a Reply

Imagery/Sensing Stories
Remote-Soil-Sensing-Mapping
Imagery/SensingRemote Soil Sensing Enhances Precision Farming, Promotes Nutrient Use Efficiency
April 11, 2018
Precision agriculture management requires understanding soil at increasingly finer scales. Conventional soil sampling and laboratory analyses often lack this granularity Read More
AmericasIn Granular’s Deal with Planet, Satellite Images Deliver Peace of Mind
March 27, 2018
If only software from precision agriculture companies was more like Facebook or Google, no one in North America would be Read More
AmericasNFMS 2018: Precision Farming, Ag Tech Developments from Louisville
February 21, 2018
Last week’s annual National Farm Machinery Show (NFMS) in Louisville, KY, was this author’s first experience attending the mid-winter Midwest Read More
Corn close up
Imagery/SensingSyngenta Acquires Satellite Imagery Provider FarmShots
February 14, 2018
Syngenta has acquired FarmShots, Inc., a North Carolina-based innovator of high-resolution satellite imagery that detects plant health by analyzing absorbed Read More
Trending Articles
SDSU-drone
Business ManagementInside the Key Strategies For Selling Precision Ag Services
April 13, 2018
In its earliest manifestation, the motive for developing precision agriculture service was entirely pure. Agronomists knew that crops were responding Read More
CROO Robotics’ automated strawberry harvester
Robotics/Labor SaversSpecialty Crops: Get in Gear Now for Agriculture’s Robotic Revolution
April 11, 2018
While the immigration debate rages on in Washington, DC, with little chance for reform in sight, the uncertain labor picture Read More
InSiteDCM
Business ManagementDelivering on Ag Data Value
April 3, 2018
Bruce Baier is another deeply experienced precision agriculture manager who survived the early years of ag technology while riding the Read More
University-of-Georgia-photo-credit-USDA
Business Management25 Best Colleges for Precision Agriculture
March 21, 2018
Choosing the right college is a process. It’s one that I’m just now embarking on with my teenage daughter. Long Read More
Farmer-tablet
Decision Support SoftwareOpinion: The Missing Link in Precision Agriculture
March 15, 2018
The agtech boom over the last two years is indeed astonishing. Farmers are becoming more open to new, emerging technologies Read More
Filling The Planter from Cab
Service ProvidersPrecision Agriculture: What is it?
March 15, 2018
If we look at the title of the article, all of you will come to an answer. These answers will Read More
Latest News
Industry NewsClimate Corp Announces 5 New FieldView Integrations
April 23, 2018
The Climate Corporation announced the addition of five industry-leading partners to The Climate Corporation’s Climate FieldView digital agriculture platform. The Read More
Laura_Crook_WinterWheat_Blackgrass_PrecisionAg
Industry NewsKansas Software Outfit Ag Developer Announces agX Integ…
April 23, 2018
Ag Developer, a Kansas based software development company, is simplifying grower/advisor communications by connecting to the agX Platform, according to Read More
field_in_back_1000_wd-featured-image
Industry NewsAyrstone Introduces High-Speed WiFi System for Farms
April 20, 2018
WiFi has become a necessity, and a proliferation of new WiFi devices have come to market for urban homes and Read More
Indian-Agriculture
AsiaIndian IoT Platform for Pre and Post Harvest Raises See…
April 19, 2018
Indian startup AgNext has raised an undisclosed seed round led by India-focused Agtech VC Omnivore Partners along with Singaporean angel Read More
Bayer-Forward-Farming
Industry NewsMaryland Farm Opens as Hub of Learning about Sustainabl…
April 19, 2018
Fourth-generation Maryland farmer Trey Hill measures the success of his operation not just by how many bushels of corn, soybeans, Read More
THRIVE
Industry NewsAgritech Startup Backers Announce New Corporate Partner…
April 18, 2018
Entering its fourth year, the THRIVE Venture & Innovation platform announced today the nine finalists and investment in its spring Read More
computer-in-field
EventsFinding Our Way in the Business of Precision Agricultur…
April 17, 2018
Service providers are the essential link between precision agriculture products and practices and the farmers who are increasingly relying on Read More
Farm-Storm-Clouds-Photo-Eden-Hills
Data ManagementThe Precipitation Problem in Agriculture
April 17, 2018
Precipitation is arguably the most important agricultural weather parameter, yet it is the most difficult variable to precisely measure. For Read More
Digital-Farming
Business Management7 Factors That Could Make or Break Digital Farming
April 13, 2018
Digital farming is the new technology genie – a genie that is now out of the bottle and cannot be Read More
SDSU-drone
Business ManagementInside the Key Strategies For Selling Precision Ag Serv…
April 13, 2018
In its earliest manifestation, the motive for developing precision agriculture service was entirely pure. Agronomists knew that crops were responding Read More
Facebook-phone
Data ManagementWhat Lessons Can the Ag Industry Learn from the Faceboo…
April 12, 2018
Today, a seemingly endless amount of ag data flows from growers’ fields into a host of technology platforms. It is Read More
DronesWhen High Value Crops Meet Inaccessible Areas: How Dron…
April 12, 2018
Avocados are one of the few crops in Chile that can economically be commercially cultivated on hills. On one hand Read More
Almond-trees-blooming
Sensors/IoTWhy Virtual Sensors Could Save California’s At-Ri…
April 12, 2018
To say that the Golden State can lay claim to the title of king of almonds might be an understatement. Read More
AgJunction, InfoAg 2014, Autosteer, GPS
Industry NewsAgJunction Launches Online Store, Low Cost Guidance Sys…
April 12, 2018
AgJunction today announced the opening of the HandsFreeFarm.com online store to bring low-cost, simple-to-use precision agriculture solutions direct to all Read More
aggateway
Business ManagementAgGateway Encourages Use of Standard Identifiers with A…
April 11, 2018
AgGateway, the non-profit organization with the mission to promote and enable the industry’s transition to digital agriculture, is offering a Read More
Remote-Soil-Sensing-Mapping
Imagery/SensingRemote Soil Sensing Enhances Precision Farming, Promote…
April 11, 2018
Precision agriculture management requires understanding soil at increasingly finer scales. Conventional soil sampling and laboratory analyses often lack this granularity Read More
Data ManagementREPORT: Bayer’s Digital Farming Business Slated f…
April 11, 2018
Germany’s Bayer plans to sell its digital farming business to BASF as part of changes to concessions it has offered Read More
Corn
Industry NewsSentera Announces New FieldAgent Features
April 11, 2018
Sentera announces the availability of high-fidelity crop stand, weed pressure mapping, spot scouting maps, and free local image stitching within Read More