Agriculture Impacts Weather: The Case for Connected Ecosystems

It’s fascinating to see how modern technology has helped us increase our agricultural productivity in areas not otherwise suited for our higher value crops. When viewing the Texas and Oklahoma Panhandles and southwest Kansas in Google Earth (see below), you can see areas of green interspersed with predominantly brown tones.

Texas-and-Oklahoma-Panhandles-Google-Earth

Zooming into any of these areas, you quickly discover that the vast majority of these green pixels are irrigated fields, drawing water up out of the ground from the Ogallala Aquifer, moistening the soil and the lower atmosphere via evapotranspiration that would not otherwise be occurring. Most of us have experienced micrometeorological effects due to small scale variations of the landscape, but with the much larger areas of landscape modification, visible enough to be readily identified from space, I am reminded of research by scientists such as Dr. Roger Pielke, Sr., postulating that landscape changes may be affecting climate regionally, perhaps much more significantly than any effect that atmospheric carbon dioxide content has had on a global scale.

Even as I was preparing this article, a press release came out discussing how a team of MIT scientists show evidence that Midwest summers have been cooler and wetter due to increased corn and soybean production. Just to get this on the record right away, I am not saying any of this is bad, good, or neutral. Our planet is an amazingly complex system of systems that are remarkably designed to interact and feedback with each other in more ways than we will ever understand in our lifetimes. We should apply what we have learned to feed a growing world more effectively while stewarding our most valuable resources such as water.

As one of Dr. Pielke’s graduate students in the early 1990s, I used numerical simulations of the atmosphere to determine whether or not variability of soil moisture and vegetation cover play a role in formation and evolution of Great Plains drylines, a type of weather front that frequently forms in the spring and summer days across this region, serving as a focal point for the formation of storms that provide a substantial portion of warm season rainfall as well as severe thunderstorms and tornadoes. Indeed, our simulations suggested that areas having high contrast in soil moisture conditions can enhance dryline strength and resulting local-scale circulations needed to initiate storms. My real interest in this area lies in whether or not we can improve our numerical weather prediction models, and thus our short and mid-term weather forecasts, through more accurate input information and improved physics algorithms. These models all use coupled Land Surface Models (LSMs) that account for heat and moisture transfer between the air, vegetation, and ground.

Google-Earth-pixelated

In 2015, a team of researchers led by Dr. Patricia Lawston published a paper in the American Meteorological Society’s Journal of Hydrometeorology that documented their study on the impacts of different irrigation methods on high-resolution numerical simulations of the atmosphere in Kansas and Nebraska. Using the USGS land cover database to identify all the areas of irrigated cropland, they ran simulations over two different growing seasons: 2006, which was a generally dry year; and 2008, which was a wet year. For each of those seasons they ran four different simulations, with the differences being the assumed type of irrigation method used on all the irrigated cropland.

The methods compared were sprinkler, drip, and two cases of flood irrigation (using different thresholds to trigger a need for irrigation). Even though about 80% of the irrigated land contained within the region of their simulations use the sprinkler method (primarily center-pivot systems), the point of the study was to get a sense of how important it might be for the LSMs to properly handle the physics of the various methods. That is, the more sensitive the models are to these differences, the more important it is to accurately include such information in the operational models. The overall sensitivity was determined by comparing each set to a “control” simulation where no irrigation activity was included anywhere in the region.

In all cases, the inclusion of simulated irrigation activity in the initialization of the LSM coupled with the weather model supported previous observational and numerical studies that irrigated croplands increase the humidity, decrease daytime maximum temperatures, and increase overnight minimum temperatures. Their paper included specific examples where daytime maximum temperatures were reduced by nearly 9°F in these areas compared to a simulation that did not consider the irrigation activities, and there was noticeable variation between the different types of irrigation techniques.

PrecisionAg_201801_IrrigatedLands
Figure from Lawston et al. (2015) paper showing differences in simulated two-day rainfall accumulation over 25-26 May 2008 between simulations using four different types of irrigation on the irrigated croplands compared to a simulation that neglects irrigation. Click to enlarge image.

What I find even more interesting from a forecasting perspective, especially when it comes to the need for accurate forecasts in irrigation management, is to look at how rainfall forecasts might be affected by including proper irrigation activity and physics in our models. I have included a graphic from their paper showing differences in two-day simulated precipitation accumulation between each of the cases that included irrigation information and the control run. There is significant signal in all of these cases, with both positive and negative changes exceeding 1” of accumulation. Also of note is that the larger impacts are not over the irrigated areas, but the adjacent and downstream of these areas. However, I speculate this may in part be due to the fact that much of the irrigated land is in the climatological drier area (hence why there is more irrigation there). But, it certainly corroborates my old study and many other subsequent studies that the distribution of soil moisture (location of wet vs. dry and the intensity of the differences) and vegetation cover has an impact on the development of the small-scale focal points for storm formation, along with an effect of providing additional moisture content to the storms themselves.

These results leave me with a couple of key takeaways as we consider the future of agriculture:

  1. We need to move beyond “one-way” data information exchange, where one part of our national infrastructure consumes data from another without reciprocation. In this case, instead of agriculture being purely a consumer of weather information, it should also be a contributor of data that can improve services for all. And it has to be much more than additional weather stations. If we actually had soil samples, planting dates, irrigation type and activities, we could feed such information directly into the land surface models to improve local scale weather forecasts directly. I recognize there are tremendous cultural, legal, and technical issues involved. But, I am hopeful we can realize this goal over time as the world’s different technologies continue to become more interconnected and groups like AgGateway continue to build data exchange standards.
  2. We need to recognize the hydrological cycle is also a local and regional issue, not just one associated with global climate patterns. Technologies such as Variable Rate Irrigation, combined with advanced weather, soil and agronomic analytics will become more cost-effective and will be enabling factors to help us become more weather-resilient. As a nation, we need to ensure we remain at the cutting edge of near-term weather analysis and forecasting science and technology to support these initiatives.

We have a lot of work to do and many challenges, from basic science through implementation to the legal challenges, but our need to feed a growing world will get us there as we work together.

Leave a Reply

One comment on “Agriculture Impacts Weather: The Case for Connected Ecosystems

  1. Thoroughly enjoyed reading this. I did my own research in soil moisture and vegetation anomalies and impacts to convection. I shifted into agriculture and hydroclimatology in my career over the years and have come to the same conclusions and feelings.

Data Management Stories
Finalists-teams-Syngenta-Crop-Challenge-in-Analytics
Data ManagementData-Driven Strategies and Machine Learning Shaping the Future of Agriculture
April 26, 2018
Last week I attended the 2018 INFORMS Conference on Business Analytics & Operations Research in Baltimore, MD. Among the activities Read More
Farm-Storm-Clouds-Photo-Eden-Hills
Data ManagementThe Precipitation Problem in Agriculture
April 17, 2018
Precipitation is arguably the most important agricultural weather parameter, yet it is the most difficult variable to precisely measure. For Read More
Facebook-phone
Data ManagementWhat Lessons Can the Ag Industry Learn from the Facebook Data Breach? How to Tell if Your Ag Data is Secure
April 12, 2018
Today, a seemingly endless amount of ag data flows from growers’ fields into a host of technology platforms. It is Read More
Data ManagementREPORT: Bayer’s Digital Farming Business Slated for BASF Takeover
April 11, 2018
Germany’s Bayer plans to sell its digital farming business to BASF as part of changes to concessions it has offered Read More
Trending Articles
Farm-Storm-Clouds-Photo-Eden-Hills
Data ManagementThe Precipitation Problem in Agriculture
April 17, 2018
Precipitation is arguably the most important agricultural weather parameter, yet it is the most difficult variable to precisely measure. For Read More
SDSU-drone
Business ManagementInside the Key Strategies For Selling Precision Ag Services
April 13, 2018
In its earliest manifestation, the motive for developing precision agriculture service was entirely pure. Agronomists knew that crops were responding Read More
CROO Robotics’ automated strawberry harvester
Robotics/Labor SaversSpecialty Crops: Get in Gear Now for Agriculture’s Robotic Revolution
April 11, 2018
While the immigration debate rages on in Washington, DC, with little chance for reform in sight, the uncertain labor picture Read More
InSiteDCM
Business ManagementDelivering on Ag Data Value
April 3, 2018
Bruce Baier is another deeply experienced precision agriculture manager who survived the early years of ag technology while riding the Read More
University-of-Georgia-photo-credit-USDA
Business Management25 Best Colleges for Precision Agriculture
March 21, 2018
Choosing the right college is a process. It’s one that I’m just now embarking on with my teenage daughter. Long Read More
Farmer-tablet
Decision Support SoftwareOpinion: The Missing Link in Precision Agriculture
March 15, 2018
The agtech boom over the last two years is indeed astonishing. Farmers are becoming more open to new, emerging technologies Read More
Latest News
Finalists-teams-Syngenta-Crop-Challenge-in-Analytics
Data ManagementData-Driven Strategies and Machine Learning Shaping the…
April 26, 2018
Last week I attended the 2018 INFORMS Conference on Business Analytics & Operations Research in Baltimore, MD. Among the activities Read More
Sentera-FieldAgent
Industry NewsSentera, The Climate Corp. Partner to Enhance Agronomic…
April 24, 2018
Climate FieldView customers can now enjoy seamless integration of Sentera FieldAgent on-field sensor and analytics products with FieldView, as well Read More
Field Sprayer
Sensors/IoTHere’s What’s Working with the Internet of Things ̷…
April 24, 2018
With the advent of the Internet of Things (IoT), we are now seeing farmers use more wireless technologies to increase Read More
Case-Header-2
Industry NewsAustralian Company Offers On Combine Analysis Technolog…
April 24, 2018
Next Instruments is an Australian manufacturer of instrumentation for the grains and food industries. Over the last 5 years Next Read More
corn field
Industry NewsNutrient Ag Solutions Launching New Digital Farming Pla…
April 24, 2018
Nutrien’s retail division – soon to be rebranded as Nutrien Ag Solutions – has announced the launch of a new Read More
Industry NewsClimate Corp Announces 5 New FieldView Integrations
April 23, 2018
The Climate Corporation announced the addition of five industry-leading partners to The Climate Corporation’s Climate FieldView digital agriculture platform. The Read More
Laura_Crook_WinterWheat_Blackgrass_PrecisionAg
Industry NewsKansas Software Outfit Ag Developer Announces agX Integ…
April 23, 2018
Ag Developer, a Kansas based software development company, is simplifying grower/advisor communications by connecting to the agX Platform, according to Read More
field_in_back_1000_wd-featured-image
Industry NewsAyrstone Introduces High-Speed WiFi System for Farms
April 20, 2018
WiFi has become a necessity, and a proliferation of new WiFi devices have come to market for urban homes and Read More
Indian-Agriculture
AsiaIndian IoT Platform for Pre and Post Harvest Raises See…
April 19, 2018
Indian startup AgNext has raised an undisclosed seed round led by India-focused Agtech VC Omnivore Partners along with Singaporean angel Read More
Bayer-Forward-Farming
Industry NewsMaryland Farm Opens as Hub of Learning about Sustainabl…
April 19, 2018
Fourth-generation Maryland farmer Trey Hill measures the success of his operation not just by how many bushels of corn, soybeans, Read More
THRIVE
Industry NewsAgritech Startup Backers Announce New Corporate Partner…
April 18, 2018
Entering its fourth year, the THRIVE Venture & Innovation platform announced today the nine finalists and investment in its spring Read More
computer-in-field
EventsFinding Our Way in the Business of Precision Agricultur…
April 17, 2018
Service providers are the essential link between precision agriculture products and practices and the farmers who are increasingly relying on Read More
Farm-Storm-Clouds-Photo-Eden-Hills
Data ManagementThe Precipitation Problem in Agriculture
April 17, 2018
Precipitation is arguably the most important agricultural weather parameter, yet it is the most difficult variable to precisely measure. For Read More
Digital-Farming
Business Management7 Factors That Could Make or Break Digital Farming
April 13, 2018
Digital farming is the new technology genie – a genie that is now out of the bottle and cannot be Read More
SDSU-drone
Business ManagementInside the Key Strategies For Selling Precision Ag Serv…
April 13, 2018
In its earliest manifestation, the motive for developing precision agriculture service was entirely pure. Agronomists knew that crops were responding Read More
Facebook-phone
Data ManagementWhat Lessons Can the Ag Industry Learn from the Faceboo…
April 12, 2018
Today, a seemingly endless amount of ag data flows from growers’ fields into a host of technology platforms. It is Read More
DronesWhen High Value Crops Meet Inaccessible Areas: How Dron…
April 12, 2018
Avocados are one of the few crops in Chile that can economically be commercially cultivated on hills. On one hand Read More
Almond-trees-blooming
Sensors/IoTWhy Virtual Sensors Could Save California’s At-Ri…
April 12, 2018
To say that the Golden State can lay claim to the title of king of almonds might be an understatement. Read More