Can The Web Soil Survey Help To Uncover Answers To Precision Farming Questions?

A farming magazine recently published an article of an interview of two experts discussing how understanding the topography of a field can assist farmers in understanding soils. The first paragraph began with the sentences:

“For decades, NRCS soil maps have been a great way to detect soil types in a field. There’s a new generation of technologies and maps, though, that better decipher those differences and the way soils function.”

The SCS/NRCS soil survey provides information on soil mapping units. The historical manuscripts explained the major named components and described the inclusions found in the map units. Today’s NRCS digital soils maps and the associated database have evolved from the historical printed copy manuscripts. The historical manuscript provided descriptions of the map units, the taxonomic units, and the county soils maps. Recent updates to the Web Soil Survey (WSS) database provide more details on all soil components, their soil properties, and their locations within the map unit. The database contains a great deal more information than most users realize.

The article continued:

“We are lucky to have had NRCS maps and understand them as we have.” … “But in precision farming, we are ready to go to the next step.”

The NRCS maps that were directed by Congress over 100 years ago to create an inventory of arable lands evolved into a soils inventory designed for broad land use planning. In recent decades, the digital product has been improving, maybe not to the specific scale for precision farming, but it has been improved to add more information on the soils within the map unit. The paragraph continued:

“NRCS soil maps delineate soil types via boundary lines. In reality, changes between soil types in a field are gradual and don’t stop and start on a line….”.

The term “soil type’’ referred to in the article is a misnomer and displays the lack of clear understanding. The soil maps delineate a “map unit”. The “boundary lines” delineate a map unit and that map unit, typically, contains more than one type of soil. This misuse of terminology by the article’s authors and on precision farming web sites should be clarified. Recent work with precision farming agronomic firms have shown that many agronomists are not fully aware of the soil survey. Those using the term “soil type” are not aware of breadth and depth of the NRCS Web Soil Survey database.

The farmer has many tools available to answer questions.  Yield monitor maps are one of the most useful tools in precision farming.  The soil survey map is delineated by map units, however yield monitor maps can help associate the map unit soil components.  Compare any Web Soil Survey soils map to a yield monitor image. Carefully consider the image signatures. You will notice the crop yield monitor has specific red areas designating lower production.  Compare the images and notice the correlation of the yield monitor red areas and how the correspond to the various tonal photographic image areas. In the soil survey image below, the areas of lower crop yields fall within a map unit 11 in the white toned image areas.  Unfortunately, the article’s authors described these polygons with their variabilities as one soil type. The question becomes, “How can the ‘Web Soil Survey’ be used to explain the diversity of soils within the polygons?”

Web Soil Survey soils map
Web Soil Survey soil map.

Precision farming has many potential inputs available to develop a farming prescription. The Web Soil Survey map, the crop yield monitoring map, maybe using Veris Technologies mapping, or EC mapping, drone imagery for crop scouting, elevation analysis, or even soil moisture monitoring. All of these can be used to build a precision farming prescriptive analysis. But that prescription has soil as its foundation. The value of the Web Soil Survey map is to make informed decisions based on the many soil types within each map unit. The value is also to understand the soil properties associated with each soil type in the map unit. Using the variety of inputs assists the farmer in understanding the multiple soil components within the map unit and how each soil impacts the overall crop production.

The Web Soil Survey soil map above identifies three map units that exist in this field.

 2WSSmapunits1

Web Soil Survey users, and even soils experts, tend to assume there is only one soil component, or soil type, within the boundary lines. Further investigation recognizes there are a number of soil components in the map unit. Consider map unit 11 in the soil survey map above. This soil type has five soil components identified in the database. Unfortunately, most users consider only the first soil, in this case the “Colby”. Note the list of soil components, their cover kinds, slopes, and erosion classes below:

List of soil components

Aggregating the Colby component makes this soil type the vast majority of the map unit (95%). However, the second Colby is eroded and makes up 20% of map unit 11 (white areas on the image). Each of these five soil components (Colby, Colby eroded, Ulysses, Goshen, and Pleasant) have their own unique set of soil properties. The Colby component has the eroded phase separated to properly define its unique set of properties as it exists in the map unit.

The Web Soil Survey reports provide information on the soil horizons and the horizon properties. Note the soil horizons and soil properties for the non-eroded Colby component:

Soil horizons and soil properties

The Colby soil is a young soil formed in windblown sediments and has very little soil development. Contrast the Colby non-eroded soil properties to the Colby eroded soil properties as detailed in the same map unit. Notice how the erosion of the surface horizon exposes the high carbonate loess materials containing lower organic matter and higher carbonate contents, both which negatively affect crop productivity. Compare the horizons of the non-eroded Colby soil (75%) to the eroded Colby (20%). Consider the Colby soil type and the importance of understanding the productivity between the Colby component and the Colby eroded component.

The article continues:

“There is a strong correlation,” … “Within a field, you might see a general trend between soil type boundaries and actual field topography, but it will not line up perfectly.”

The soil scientist made every attempt to draw the line as accurately as possible. Using a landscape model, the soil scientist identified the minor components and their locations as they occur within the map unit. In the map unit 11 instance, the Colby eroded unit is located on the crest or knoll, whereas the non-eroded Colby component occurs on the side slopes and more level areas within the map unit. The WSS contains reports the user can run to identify the components and their locations within the map unit polygon boundaries.

“You can extract lots of information from maps like these.”…. “Let’s say you get a 2-inch rain in an hour on a field that is dish-shape. There will be tops of the hills that get an inch and lower parts that get 3 inches of rain. This might make a difference in the hybrid you plant or the field’s nitrogen management. It can go into a prediction model to predict how to better target inputs the next time.”

The expert’s statement eluded to the use of “functional maps” and algorithms to identify how soils may be different based on the topological location in the field. Using the Web Soil Survey reports allows the user to confirm the soil, its location, and its’ properties that aid in the farming prescription. Knowing what information is available in Web Soil Survey provides a better understanding of the map unit, its components, and the component properties, and how they are impacting the crop productivity.

The answer to “Can Web Soil Survey Help to Uncover Answers to Precision Farming Questions?” is, “Yes”. The value in the WSS is not in the thematic maps but in the reports. The reports explain the minor soil components, where they occur, and their unique soil properties. In this example, the low productivity areas on a yield monitoring map is due to the eroded minor component with the high carbonates at the surface. That high carbonate content will bind the fertilizer. The prescription for the precision farmer who is targeting a 300-bushel irrigated corn yield in this field would be to:

  1. Set the planter to not plant in the eroded areas.
  2. Set the fertilizer unit to not fertilize these areas.
  3. Set the irrigation pivot to avoid irrigating these areas.

Removing the eroded areas from production will lower the input costs and increase the productivity to the targeted yield, and increase the harvest profits.

Precision farmers are targeting the planting, fertilizing, and irrigating to obtain the highest production with the lowest input cost. Removing unproductive areas from the prescription allows for a higher return with a lower input. The Web Soil Survey reports contain the information to help answer questions, however the user must dig deeper.

Topics:

Leave a Reply

Imagery/Sensing Stories
Imagery/SensingEFC Systems Announces Imagery Delivery Integration with Geosys
July 25, 2017
EFC Systems, Inc. has announced a new integration between its FieldAlytics product and Geosys Bridge API for direct delivery of Read More
Yield Data Image
Data ManagementYield Data: More Than a Pretty Picture
July 13, 2017
It is mid-July, which, for the Australian cotton industry, means that picking is still going on for some growers. A Read More
Cotton closeup
Imagery/SensingCotton Growth Management with Precision Agriculture
June 20, 2017
A cotton crop presents some important differences to other commodities that are widely produced in Brazil, such as soybean and Read More
DronesNavigating a New World: Drone Technology in Agriculture (OPINION)
June 20, 2017
My first exposure to unmanned aerial vehicles (UAVs) was as a master’s student at Kansas State University. I was researching Read More
Trending Articles
Resistant-weeds-in-Brazil
InternationalUsing Precision Agriculture to Control Herbicide-Resistant Weeds in Brazil
July 24, 2017
The occurrence of weeds in agricultural fields of grain and fiber production has caused losses to farmers for a long Read More
Yield Data Image
Data ManagementYield Data: More Than a Pretty Picture
July 13, 2017
It is mid-July, which, for the Australian cotton industry, means that picking is still going on for some growers. A Read More
BASF Maglis Grower Tablet
ProfessionalsPatience Needed: Lessons for Getting New Tech onto the Farm
July 6, 2017
A popular joke within the tech industry was trotted out at GAI AgTech Week in Boston, MA, speaking volumes about Read More
PrecisionAg Vision Conference
EventsPrecisionAg® Vision Conference: Focused on the Future
June 13, 2017
PrecisionAg® is pleased to announce the return of its PrecisionAg Vision Conference, October 10-12, 2017. Based on overwhelmingly positive response Read More
Gavin Newsom Forbes AgTech-Summit
ProfessionalsAgTech Summit Aiming High for Modern Farming Solutions
June 12, 2017
THRIVE AgTech, in partnership with SVG Partners and Forbes, is hosting the third annual Forbes AgTech Summit June 28-29 in Read More
Quantix Drone Farmer
DronesTop 10 Most Intriguing Technologies in Agriculture
June 3, 2017
This may be a bit of stating the obvious here, but we’ll throw it out there anyways: as much as Read More
Latest News
CNH-and-Trimble-Data-Sharing_1
Data ManagementTrimble, CNH Collaborate on Data Sharing Connectivity
July 26, 2017
Trimble and CNH Industrial, a global leader in agricultural equipment, have announced they are enabling wireless connectivity between Trimble Ag Read More
Imagery/SensingEFC Systems Announces Imagery Delivery Integration with…
July 25, 2017
EFC Systems, Inc. has announced a new integration between its FieldAlytics product and Geosys Bridge API for direct delivery of Read More
Tablet Grower
Data ManagementProspera Raises $15 Million to Transform Farms with Dat…
July 25, 2017
Digital farming company Prospera has announced a $15 million Series B funding round. Qualcomm Ventures, the investment arm of Qualcomm Read More
Resistant-weeds-in-Brazil
InternationalUsing Precision Agriculture to Control Herbicide-Resist…
July 24, 2017
The occurrence of weeds in agricultural fields of grain and fiber production has caused losses to farmers for a long Read More
John-Deere-and-Farm-Dog
Grower Services & SolutionsFarm Dog Strengthens its Integration with John Deere Op…
July 24, 2017
Farm Dog, the leading pest and disease management platform for growers and agronomists, has completed the second stage of its Read More
Industry NewsLindsay Corp. Names Dow’s Timothy Hassinger New C…
July 19, 2017
Lindsay Corp. has  announced the appointment of Timothy Hassinger as president and CEO and a member of its board of Read More
InfoAg 2015
Events2017 Awards of Excellence Winners Announced
July 18, 2017
PrecisionAg Institute is pleased to announce its Awards of Excellence winners for 2017. Honorees of this year’s prestigious award are Read More
Interseeding Cover Crops
ProfessionalsA 3-Step Approach to Interseeding Cover Crops
July 18, 2017
As growers continue to search for opportunities to create healthier soils and increase yields, more trusted advisors and farmers are Read More
Rod Weimer and Paul Schrimpf
Excellence AwardsPast Recipients Of The PrecisionAg Awards Of Excellence
July 18, 2017
Since 2007, the PrecisionAg Insititute has sponsored the annual Awards of Excellence program. Here's a list of the past winners. Read More
Data ManagementEFC Announces FieldAlytics, Adapt-N Expanded Integratio…
July 17, 2017
EFC Systems is pleased to announce an expanded integration between its FieldAlytics product and Agronomic Technology Corp’s Adapt-N nitrogen recommendations Read More
Data ManagementOpinion: Benchmarking in Precision Agriculture is Big S…
July 17, 2017
Benchmarking has become a buzzword in precision agriculture recently and before we get too excited with all of the profound Read More
Yield Data Image
Data ManagementYield Data: More Than a Pretty Picture
July 13, 2017
It is mid-July, which, for the Australian cotton industry, means that picking is still going on for some growers. A Read More
Industry NewsQuick Rewind: Ohio Dealer Talks Deere-Precision Plantin…
July 12, 2017
A few weeks ago I took a quick trip south down I-71 to Central Ohio (for you non-Buckeyes, I-71 runs Read More
DronesSentera Launches Versatile Quad Sensor for Drones
July 12, 2017
Fully Customizable Filters on Sentera Quad Sensor Allow for Unique Crop Health Detection Capabilities Sentera introduces the latest update to Read More
Hortau Irrigation Management Software
Sensors/IoTHortau Named Finalist for CogX Artificial Intelligence …
July 10, 2017
Hortau was recently named a CogX Award finalist in the Best Artificial Intelligence Product in Agriculture category. The awards were Read More
Grower Services & SolutionsVantage South Atlantic Announces Mid-South Expansion
July 10, 2017
Vantage South Atlantic announced that it has joined Trimble Agriculture’s global network of independent Vantage partners to provide farmers, advisors, Read More
Ag Retailer and Grower WinField United
Decision Support SoftwareAgronomic Technology Corp Surpasses Daily Nitrogen Reco…
July 6, 2017
Agronomic Technology Corp, a leader in agricultural field modeling for soil, water, crops, and fertilizer, for the first time surpassed Read More
Precision IrrigationDealership Celebrates 25 Years in the Irrigation Game
July 6, 2017
25 years ago, Bobby Kempenich had an idea. An idea to launch a business that combined his knowledge of irrigation Read More