Big Ticket Items: IoT’s True Value Emerging Through Farm Machinery

Farms need to do more with less than ever before to remain competitive. This is especially true when it comes to big ticket items like agricultural machinery. We’re now seeing the implementation of new Internet of Things (IoT) technologies to track, analyze and act on data from machines like tractors, combines, planters and pickers. When paired specifically with ag machinery, these technologies will unlock the true value of unused data sources to drive new efficiencies in an increasingly resource-constrained world.

IoT technologies are much more than smart doorbells or smartphone-controlled lighting. It’s the industrial applications of IoT, rather than the consumer, that stand to make the greatest impact on how business is done, and agriculture will be a big part of that. While we’ve seen internet connected technologies in ag for over a decade, these applications have generally utilized what I like to call IoT 1.0, meaning: sensor + datalogger + cell modem = website with data. Now we’re seeing something new. By taking advantage of lower costs in both sensor and computing hardware and applying layers of analytical software, we’re poised for an explosion of new connected solutions. This explosion will be felt, in terms of adoption and value created, nowhere in ag as strongly as farm machinery.

Benefits of IoT tech for farm machinery

The emergence of IoT technologies for heavy machinery makes sense for a number of reasons. To start, a tractor and attachment are the largest capital goods a farmer will buy. According to the USDA’s Economic Research Service, tractors and equipment accounted for roughly 65 percent of a farmer’s capital expenditures in 2013. As a result, it’s vital to put this capital to work by driving up efficiency and driving down idle time. New IoT solutions are aimed at exactly that. By pulling harvested crop data via machine embedded sensors in real-time, a farm manager who is miles away can see how certain crews are doing relative to others. This also enables them to more effectively manage downstream operations such as transportation, distribution and storage by diverting more resources to high performing crews. Going one step further, we’re seeing applications developed to automate asset dispatch so that trucks are diverted to a soon-to-be-full harvester.

Source: Agricultural Economic Insights

Another reason for the close relationship between IoT and machinery is the sheer amount of data produced. According to Monsanto, sensors deployed on harvesters can collect up to 7GB of data per acre. Tractor manufacturers themselves are already gathering massive amounts of data on everything from engine performance to operator seat positions. OEM’s of attachments like harvesters are also starting to do the same with sensors and software that can measure the weight of harvested product in real-time (Figure 1). Another example is a tiller attachment calculating clay content of soil based on resistance sensors that, coupled with GPS feeds, can compile detailed soil composition maps. While upwards of 80 percent of a machine’s data might go unused today, don’t expect it to go to waste for long. As advanced analytics at the tractor level and in the cloud catch up to the data produced, it’s expected that value will be there sooner rather than later.

Example IoT Data Flow for Machinery

This data has the potential to change how business is done. Most of the data captured from these devices can be used to directly affect the farmer’s decisions, but a growing set of data can also drive new revenue streams, new services and entirely new products. One of the most common of these new revenue streams for big machinery OEMs is preventative maintenance. While a farmer might not be aware of an issue during operation, multiple sensors can measure vibration, noise, stress and resistance of vital parts within the machine. This data can predict when parts might fail before they actually do, thus opening up a new service opportunity for machinery vendors. Other downstream sectors can also benefit from data collected by machinery. For example, a packing/cooling facility might be open to paying for access to real-time harvest data so they could be better prepared to receive product.

Lastly, we have recently heard a lot about farm labor shortages affecting all sectors of ag. Between 2002 and 2012 the number of new field and crop workers immigrating to the United States fell by roughly 75 percent, according to the New American Economy Organization. IoT technology for machinery can help solve the labor shortage problem by driving operational efficiencies with mechanized harvesting of crops that once had to be hand-picked. In my agricultural backyard of the Salinas Valley, lettuce producers are starting to deploy new harvesters that slice off heads of lettuce using supersonic jets of water, and strawberry growers are testing robotic picking machines that utilize IoT and edge (field level) computing power to scan for red, ripe berries for harvest by robotic arms. An interesting byproduct of this automation technology has actually been more interest in harvest related jobs. In fact, according to Taylor Farms – one of the nation’s largest lettuce producers – they have recorded a larger number of new workers in their 20s and 30s applying specifically to work on the new automated machine crews due to interest in this technology.

Challenges to overcome with IoT machinery for ag

As with the emergence of all new technology, however, challenges do exist. Agriculture is tremendously specialized, so a particular technology applied to potatoes, for example, might not be applicable to onions. Additionally, technology providers must navigate a variety of sensor types, data interfaces and connectivity options. As a result, bringing these technologies and knowhow together into full IoT solutions is becoming just as valuable as the core technology itself. Another challenge that must be overcome is data access since data from one source is often siloed and difficult to access from outside that ecosystem. For example, a tractor with a proprietary data collection system may not allow other data to be accessed outside of their system. As a result, some parts of a farm might struggle to benefit from the data captured in others, and this should be considered when developing or evaluating IoT solutions.

The good news is that a growing number of technology providers are addressing these challenges. At Infiswift, we’re leveraging our scalable and hardware agnostic IoT platform to help OEMs and other enterprises commercialize and deploy IoT enabled technologies. What’s different is that these solutions take advantage of increasingly commoditized hardware and use any form of data connectivity (Bluetooth, ZigBee, WiFi, cellular, Low-Power WAN, etc.) based on the application requirements. On the software side, infiswift can deploy computing power and intelligence at the edge (field level) and in the cloud (server level) to gather data that is open to any user. This flexible solution is customized for each customer’s specific needs and drives costs down by minimizing cloud and data communications costs.

As we move into a future where everything is connected and the utilization of data becomes increasingly important, we need to be active in ensuring these new technologies are designed and exist to help drive value – whether that’s through increasing efficiency, decreasing failure rates or providing new levels of operational insight. Big machines will likely be where this revolution starts, but won’t be where it ends. That means that you’ll have to bring your imagination because the next round of IoT-driven technologies will only exist if people are able to connect the dots between a potential source of data and a solution that might not yet exist.

Leave a Reply

Regions Stories
Farmer with iPad
Australia/New ZealandAgrian Expands into Australia
September 20, 2017
In line with a familiar growth trajectory, Agrian Inc. is moving into Australia with a physical support and sales presence Read More
Petra-Andren-Cicada-Innovations
Australia/New ZealandGrowLab’s Rocket Fuel for AgTech in Australia
September 19, 2017
Despite its superpower status as a producer and exporter of agricultural goods and services, up until now Australia has had Read More
CropIn-Team-Photo-credit-BW-Disrupt
AsiaCropIn Aims to be a Global Leader in AgTech Sector
September 19, 2017
Krishna Kumar created AgTech startup, CropIn Technology in 2010, along with co-founders Kunal Prasad and Chittranjan Jena. The trio went Read More
China-Beidou-Navigation-Satellite-System
AsiaChina’s Navigation System Gets Powerful Chip to Improve Positioning
September 18, 2017
A new powerful chip technology has been introduced in China’s national satellite navigation system to provide high-precision positioning, according to Read More
Trending Articles
John-Deere-labs
Tools & Smart EquipmentHow John Deere’s New AI Lab Is Designing Farm Equipment for a More Sustainable Future
September 15, 2017
On a block in San Francisco’s SoMa district, near LinkedIn’s headquarters and dozens of startups, a 180-year-old company best-known for Read More
BASF Maglis grower retailer tablet
Data ManagementWhat Will Happen to My Data? Understanding Your Rights in Precision Agriculture
September 12, 2017
The use of precision agriculture-based decision making to determine fertilizer rates and hybrid types and planting rates is becoming more Read More
Robotics/Labor SaversBlue River, Deere Deal Will Accelerate Farm Robot Innovation
September 11, 2017
No, Blue River Co-founder and CEO Jorge Heraud has not been deposed — Gaddafi-style — by big, bad corporate overlord Read More
Farming at Sunset
Business ManagementAgtech Issues: The Shiny Object Syndrome
September 6, 2017
Do you remember those cartoons where someone lures someone else by placing a piece of candy, small amount of money, Read More
AgQuip overview
Australia/New ZealandAgQuip 2017 Displays New Ag Technology in Australia
August 28, 2017
The annual AgQuip field days took place in Gunnedah, NSW on August 22-24. Being the largest agricultural field days in Read More
Agri-AFC-cotton-baler
Business ManagementBringing a Southern Sensibility to Precision Agriculture
August 7, 2017
Amy Winstead considers herself blessed to have gotten in on the ground floor of precision ag adoption in the Southeast. Read More
Latest News
Imagery/SensingPlanet Announces New Hi-Res Imagery Products
September 21, 2017
Since our acquisition of Terra Bella, and the SkySat constellation of seven satellites, we’ve been focused on making this high-resolution Read More
Systems ManagementBayer Dismisses Antitrust Concerns about Digital Farmin…
September 20, 2017
Bayer said it was unable to propose the sale of any digital farming assets to allay EU concerns about its Read More
Farmer with iPad
Australia/New ZealandAgrian Expands into Australia
September 20, 2017
In line with a familiar growth trajectory, Agrian Inc. is moving into Australia with a physical support and sales presence Read More
Robotics Specialty Crops
EventsPrecision in Specialty Crops Gains Momentum
September 20, 2017
When John Deere acquired Blue River Technologies (BRT) recently, BRT’s See & Spray technology received plenty of play. Yet many Read More
Decision Support SoftwareSyngenta Helps Lead Efforts for Farm Management Softwar…
September 19, 2017
Ag data from tractors, combines, planters, and other farm machinery present a huge opportunity for growers to manage their operations Read More
Petra-Andren-Cicada-Innovations
Australia/New ZealandGrowLab’s Rocket Fuel for AgTech in Australia
September 19, 2017
Despite its superpower status as a producer and exporter of agricultural goods and services, up until now Australia has had Read More
CropIn-Team-Photo-credit-BW-Disrupt
AsiaCropIn Aims to be a Global Leader in AgTech Sector
September 19, 2017
Krishna Kumar created AgTech startup, CropIn Technology in 2010, along with co-founders Kunal Prasad and Chittranjan Jena. The trio went Read More
China-Beidou-Navigation-Satellite-System
AsiaChina’s Navigation System Gets Powerful Chip to I…
September 18, 2017
A new powerful chip technology has been introduced in China’s national satellite navigation system to provide high-precision positioning, according to Read More
Tablet Grower
Industry NewsFieldReveal Names Hesse New CEO
September 18, 2017
Matt Hesse has been selected as the Chief Executive Officer of FieldReveal, a newly launched joint venture formed to deliver Read More
John-Deere-labs
Tools & Smart EquipmentHow John Deere’s New AI Lab Is Designing Farm Equipment…
September 15, 2017
On a block in San Francisco’s SoMa district, near LinkedIn’s headquarters and dozens of startups, a 180-year-old company best-known for Read More
Wheat sunrise
Australia/New ZealandSparkLabs Group Launches an Agricultural Tech Accelerat…
September 15, 2017
SparkLabs Group, which claims to be the largest startup accelerator group in Asia, is stepping into agricultural tech with a Read More
Sensors/IoTCollaboration Leverages Internet of Things, Sensors in …
September 15, 2017
The vision of having license-free community sensor networks for agricultural users has made a giant leap closer to reality. A Read More
Young Corn Field
Data ManagementPurdue Online Tool to Help Farmers Make Precision Decis…
September 14, 2017
An innovative online tool developed by a Purdue University engineering professor will allow farmers to process data collected from their Read More
forbes-agtech-summit
Precision IrrigationImproving Water Management: Can Silicon Valley Help?
September 13, 2017
I recently attended the Forbes AgTech Summit in Salinas, CA, where roughly 50 start-up companies originating from Silicon Valley and Read More
Nate-Dorsey-Field-Trial-Curve-Compensation
Systems ManagementField Trial: Precision Application and Curve Compensati…
September 13, 2017
Several months ago I wrote an article about curve compensation in planters and how these systems can help create more Read More
Diamondback moth
Tools & Smart EquipmentTechAccel Invests in Unique Sprayable RNAi Pesticide Te…
September 12, 2017
TechAccel, the Kansas City-based technology and venture development company, has announced it has awarded the first grant under its “Path Read More
BASF Maglis grower retailer tablet
Data ManagementWhat Will Happen to My Data? Understanding Your Rights …
September 12, 2017
The use of precision agriculture-based decision making to determine fertilizer rates and hybrid types and planting rates is becoming more Read More
Terra
Imagery/SensingAerial Imagery Aids Decision-Making
September 12, 2017
As the growing season has progressed, aerial imagery has been part of the world record setting data-collection efforts for Terra, Read More