Precision Agriculture, Then And Now

A friend recently asked me if precision agriculture is going the way of the airline industry. In other words, will the various companies, large and small, begin to consolidate so that over time there are just four or five major players? This is a fascinating question, especially in light of recent acquisitions and partnerships in the agricultural sector. Before answering this question, it may be helpful to provide some background on where precision agriculture is today relative to its beginnings some 30 years ago.

Like most other technology-oriented industries, precision agriculture is going through evolutionary phases, though at a relatively faster pace. Using a human habitation analogy, precision agriculture began in the early 1980s with trailblazers. Trailblazers consisted of pockets of one or two individuals scattered across the country. They saw a vision of what a personal computer coupled with a geographic information system (GIS) and a global positioning system (GPS) could mean for agriculture. These innovators in government, university and industry took advantage of later generations of these systems that were becoming both practical and cost-effective. Most of their energy was focused on adapting the software and communication components of these systems so that they could work together in an agricultural field setting. While far from commercial services, these individuals were able to demonstrate the value of geographically-addressed points in a field to record observations and to make derivative products such as a variable-rate map. One forgets that during the late 1980s, fax machines could only transmit text at very low baud rates at a cost of thousands of dollars and that the Internet was in its infancy.

The Early Pioneers

The 1990s was the decade of pioneers. Small start-ups were introducing more accurate GPS units, yield monitors and software programs that assisted growers in the collection of field data and the interpretation of that data for production decisions. Most software was distributed on floppy disks but a few companies were taking advantage of the Internet with Web-based programs. Larger equipment companies were incorporating GPS units into their hardware so that the geographic positioning of material applications or harvested biomass could be tracked across a field. The 1990s saw the widespread use of laptop computers and handheld devices in the form of personal digital assistants (PDAs). Laptop computers and PDAs gave individuals mobility in the field. Software followed these mobile devices allowing participants in precision agriculture to trace a boundary, record a soil sample location and make crop and pest observations.

The pioneers, be they growers, consultants, retailers, distributors or companies, faced two major hurdles in the adoption of precision agriculture. The first hurdle was the incompatibility of hardware and software. Every equipment company had their own proprietary wiring, devices and file formats for recording and transferring data to and from the field. It was a meticulous and painful process to get machinery and programs to talk with one another. Incompatibility resulted in a high level of frustration among growers and their providers and slowed the adoption of a beneficial technology. The second hurdle was the learning curve among agricultural participants. Precision agriculture demanded not only new technical skills but a new mindset. A hundred years of whole field practices had to be adjusted to subfield information. Consumed with getting things to work, the second hurdle was rarely addressed in the early decades of precision agriculture.

The 2000s was the decade of settlers. During this period, the basic elements that would ultimately define a precision agriculture service came to fruition. Whether offered by small or large companies, these elements consisted of boundary making, recordkeeping, field notes, crop and pest scouting, field sampling in coordination with soil labs, variable-rate applications and other software tailored to crop-specific production practices. Nearly all companies staked out well-defined market geographies with little overlap. Some companies targeted growers while others worked through retailers, distributors, consultants and other entities who engaged growers.

During this decade of settlers, customers jumped from company to company in quest of new offerings or price advantages. The 2000s witnessed the widespread use of tablet computers and cell phones. In the latter years of this decade, cell phones evolved into smartphones, with their built-in accessories and ability to access the Internet. Flash drives and cloud computing also made their introduction in the 2000s. Flash drives made an immediate impact on precision agriculture with their ability to shuttle data to and from a desktop or portable computer to hardware in the field.

City Building

The present decade, 2010s, is seeing the rise of cities. As precision agriculture becomes more main stream, the larger equipment, seed and chemical companies, distributors and retailers are either buying or partnering with smaller companies offering new technologies or solutions. Simply put, to compete, any entity supplying products or information to growers must have a precision agriculture service. At the same time, venture capital outside of agriculture is buying up farmland and retailers across the country. As each retail location comes into the venture capital fold, a local precision agriculture program is replaced with a corporate one. The continual acquisition of farmland and retail outlets reduces the market for other competing companies.

The present decade also marks the movement from “precision” agriculture to “decision” agriculture. The earlier learning curve for technical skills and data solutions went from being voluntary to a requirement for participation in precision agriculture. Customer desire for both technology and knowledge fueled the vertical integration of entities in order to provide a “one-stop shop” not only for a precision agriculture program but also for a decision support system. A decision support system that supports best management practices and covers the risk for their implementation. The decade saw the introduction of calculators to assess the sustainability of production practices. A sustainability assessment helps growers be more efficient with their resources and better stewards of their farmland.

New technologies, such as described in this PrecisionAg magazine edition, will continue to define precision agriculture in the future, but the vertical integration of entities with its focus on decision making will change the composition of competitors. In answering my friend’s question, precision agriculture in the remaining years of this decade will, like the airline industry, end up with four or five major players globally. And, to the surprise of some, the monies fueling this integration will very likely come from outside the agricultural community. While many of the early and later entrants in precision agriculture will be absorbed in the current and future consolidation, others will redefine themselves. Even as precision agriculture matures like other technology-oriented industries, there will always be new innovations creating new opportunities due to the complex and changing nature of agriculture.

Leave a Reply

One comment on “Precision Agriculture, Then And Now

  1. Where do you see the soil labs offering field services and software programs fitting in as we move to the “future”? Will they be “gobbled up too by the venture capital?

Service Providers Stories
Digital-Farming
Business Management7 Factors That Could Make or Break Digital Farming
April 13, 2018
Digital farming is the new technology genie – a genie that is now out of the bottle and cannot be Read More
SDSU-drone
Business ManagementInside the Key Strategies For Selling Precision Ag Services
April 13, 2018
In its earliest manifestation, the motive for developing precision agriculture service was entirely pure. Agronomists knew that crops were responding Read More
aggateway
Business ManagementAgGateway Encourages Use of Standard Identifiers with AGIIS Subscription Promotion
April 11, 2018
AgGateway, the non-profit organization with the mission to promote and enable the industry’s transition to digital agriculture, is offering a Read More
Data ManagementREPORT: Bayer’s Digital Farming Business Slated for BASF Takeover
April 11, 2018
Germany’s Bayer plans to sell its digital farming business to BASF as part of changes to concessions it has offered Read More
Trending Articles
Farm-Storm-Clouds-Photo-Eden-Hills
Data ManagementThe Precipitation Problem in Agriculture
April 17, 2018
Precipitation is arguably the most important agricultural weather parameter, yet it is the most difficult variable to precisely measure. For Read More
SDSU-drone
Business ManagementInside the Key Strategies For Selling Precision Ag Services
April 13, 2018
In its earliest manifestation, the motive for developing precision agriculture service was entirely pure. Agronomists knew that crops were responding Read More
CROO Robotics’ automated strawberry harvester
Robotics/Labor SaversSpecialty Crops: Get in Gear Now for Agriculture’s Robotic Revolution
April 11, 2018
While the immigration debate rages on in Washington, DC, with little chance for reform in sight, the uncertain labor picture Read More
InSiteDCM
Business ManagementDelivering on Ag Data Value
April 3, 2018
Bruce Baier is another deeply experienced precision agriculture manager who survived the early years of ag technology while riding the Read More
University-of-Georgia-photo-credit-USDA
Business Management25 Best Colleges for Precision Agriculture
March 21, 2018
Choosing the right college is a process. It’s one that I’m just now embarking on with my teenage daughter. Long Read More
Farmer-tablet
Decision Support SoftwareOpinion: The Missing Link in Precision Agriculture
March 15, 2018
The agtech boom over the last two years is indeed astonishing. Farmers are becoming more open to new, emerging technologies Read More
Latest News
Finalists-teams-Syngenta-Crop-Challenge-in-Analytics
Data ManagementData-Driven Strategies and Machine Learning Shaping the…
April 26, 2018
Last week I attended the 2018 INFORMS Conference on Business Analytics & Operations Research in Baltimore, MD. Among the activities Read More
Sentera-FieldAgent
Industry NewsSentera, The Climate Corp. Partner to Enhance Agronomic…
April 24, 2018
Climate FieldView customers can now enjoy seamless integration of Sentera FieldAgent on-field sensor and analytics products with FieldView, as well Read More
Field Sprayer
Sensors/IoTHere’s What’s Working with the Internet of Things ̷…
April 24, 2018
With the advent of the Internet of Things (IoT), we are now seeing farmers use more wireless technologies to increase Read More
Case-Header-2
Industry NewsAustralian Company Offers On Combine Analysis Technolog…
April 24, 2018
Next Instruments is an Australian manufacturer of instrumentation for the grains and food industries. Over the last 5 years Next Read More
corn field
Industry NewsNutrient Ag Solutions Launching New Digital Farming Pla…
April 24, 2018
Nutrien’s retail division – soon to be rebranded as Nutrien Ag Solutions – has announced the launch of a new Read More
Industry NewsClimate Corp Announces 5 New FieldView Integrations
April 23, 2018
The Climate Corporation announced the addition of five industry-leading partners to The Climate Corporation’s Climate FieldView digital agriculture platform. The Read More
Laura_Crook_WinterWheat_Blackgrass_PrecisionAg
Industry NewsKansas Software Outfit Ag Developer Announces agX Integ…
April 23, 2018
Ag Developer, a Kansas based software development company, is simplifying grower/advisor communications by connecting to the agX Platform, according to Read More
field_in_back_1000_wd-featured-image
Industry NewsAyrstone Introduces High-Speed WiFi System for Farms
April 20, 2018
WiFi has become a necessity, and a proliferation of new WiFi devices have come to market for urban homes and Read More
Indian-Agriculture
AsiaIndian IoT Platform for Pre and Post Harvest Raises See…
April 19, 2018
Indian startup AgNext has raised an undisclosed seed round led by India-focused Agtech VC Omnivore Partners along with Singaporean angel Read More
Bayer-Forward-Farming
Industry NewsMaryland Farm Opens as Hub of Learning about Sustainabl…
April 19, 2018
Fourth-generation Maryland farmer Trey Hill measures the success of his operation not just by how many bushels of corn, soybeans, Read More
THRIVE
Industry NewsAgritech Startup Backers Announce New Corporate Partner…
April 18, 2018
Entering its fourth year, the THRIVE Venture & Innovation platform announced today the nine finalists and investment in its spring Read More
computer-in-field
EventsFinding Our Way in the Business of Precision Agricultur…
April 17, 2018
Service providers are the essential link between precision agriculture products and practices and the farmers who are increasingly relying on Read More
Farm-Storm-Clouds-Photo-Eden-Hills
Data ManagementThe Precipitation Problem in Agriculture
April 17, 2018
Precipitation is arguably the most important agricultural weather parameter, yet it is the most difficult variable to precisely measure. For Read More
Digital-Farming
Business Management7 Factors That Could Make or Break Digital Farming
April 13, 2018
Digital farming is the new technology genie – a genie that is now out of the bottle and cannot be Read More
SDSU-drone
Business ManagementInside the Key Strategies For Selling Precision Ag Serv…
April 13, 2018
In its earliest manifestation, the motive for developing precision agriculture service was entirely pure. Agronomists knew that crops were responding Read More
Facebook-phone
Data ManagementWhat Lessons Can the Ag Industry Learn from the Faceboo…
April 12, 2018
Today, a seemingly endless amount of ag data flows from growers’ fields into a host of technology platforms. It is Read More
DronesWhen High Value Crops Meet Inaccessible Areas: How Dron…
April 12, 2018
Avocados are one of the few crops in Chile that can economically be commercially cultivated on hills. On one hand Read More
Almond-trees-blooming
Sensors/IoTWhy Virtual Sensors Could Save California’s At-Ri…
April 12, 2018
To say that the Golden State can lay claim to the title of king of almonds might be an understatement. Read More