New Zealand: Focus On Water Management

Pastoral agriculture in New Zealand produces more than a third of all internationally traded dairy products, and approximately 20% and 10% of all internationally traded sheep and beef, respectively. For a country smaller than the size of Nebraska, with a population of only 4 million, these are impressive statistics.

The country’s natural advantage is an equable climate, and the ability to grow grass all year round. However, increased productivity over recent years largely to fulfill dairy export demands has led to increased dependence on irrigation systems to extend dairying into new regions and maintain productivity levels through the dry summer months.

This has put pressure on freshwater allocations with resultant restrictions, so that farmers are looking to optimize the water-use efficiency of their irrigated pastoral systems, aiming for best conversion of each millimeter of applied water to plant growth. Consequently, there is a current trend to replace traditional flood irrigation systems with more efficient center pivot and lateral sprinkler systems, with an estimated 40% of all irrigated land now under these sprinkler systems. This opens up opportunities for variable rate irrigation scheduling, with individual sprinkler control.

The New Zealand Centre for Precision Agriculture and Landcare Research (an environmental research Crown Research Institute) are developing a soil-based decision support tool for variable rate irrigation scheduling, so that a sprinkler system can be directed to deliver different depths of water to different zones based on soil differences. This gives better use of stored soil water, especially in the variable, young alluvial soils, which typify many of New Zealand’s soils.

For example, some of our research in the Canterbury Plains of the South Island has found that a 600-meter (approximately 1,968 feet) center pivot, covering an area of 113 hectares (about 280 acres), irrigates soils with available water holding capacities ranging between 40 and 100 mm available water (approx. 1.5 to 4 inches), so that some zones ideally require irrigation earlier that others to maintain potential yields.

EM mapping is being used to delineate soil spatial variability on a basis of differences in soil apparent electrical conductivity (EC). Soil EC differences are largely due to differences in soil texture and moisture in these non-saline soils, and our research has found good relationships between soil available water holding capacity (AWC) and soil EC, so that soil AWC maps can be produced. These maps indicate the maximum amount of available water that a soil can supply to plants, and are used, with daily soil moisture predictions or measurements of wetting and drying within each zone, to produce soil water status maps. Soil water status maps predict the day on which each zone reaches it’s irrigation trigger point. The maps are available for upload to an automated variable rate irrigation system.

The variable rate irrigation system is being developed by WMC Technology Ltd. (NZ) and is at present in the testing stage. Solenoids are fitted to sprinklers and controlled in banks of four, with each controller contributing to a wireless network. The system is controlled by software that determines the application depth at any point under the irrigator.

An example of the need for water management is Manawatu Sand Country, where corn is being grown as a grain and fodder crop. Sandy knolls reside in an undulating sand plain topography, which tend to dry out very quickly in early summer and become hydrophobic (water repellent). Ideally they require very frequent irrigation events to maintain soil moisture for potential crop growth.

In comparison, other low lying zones that are just meters away stay wet by receiving additional water as a result of capillary rise from a high water table, and therefore require less irrigation to maintain the optimum soil moisture for potential crop growth. This is a situation where variable-rate irrigation is desirable as it (1) meets the needs of high water-use soils and (2) decreases over-watering of low-lying areas that might otherwise become flooded, which in turn stunts plant growth and increases the likelihood of nutrient leaching and plant disease, as well as wasting water.

Variable rate irrigation (VRI) is an enabling technology with multiple benefits. It improves water-use efficiency and allows crop flexibility under one irrigator where crop type can be matched to soil type. It also increases options for chemigation and fertigation. Saved water can be redirected elsewhere allowing better strategic use when it is limited or restrictions are imposed mid-season when crop demand is highest. Our research shows water savings of 10% to 20% under VRI systems, based on hypothetical irrigation scheduling using a water balance model where soil zones are only irrigated when they reach their specific irrigation trigger point (i.e. a known AWC depletion factor). This research will continue to (1) develop the variable rate irrigation soil decision tool, and to (2) investigate the potential advantages and uptake of these systems by New Zealand agriculture.

The New Zealand Centre for Precision Agriculture is undertaking a wide range of research to meet the demands of current agricultural systems in the country. The Centre has developed a pasture growth meter to map pasture yields. The maps are a grazing management tool aimed at improved pasture utilization. The rapid pasture meter is now produced and marketed by a local manufacturing company CDAX Systems Ltd., Palmerston North, New Zealand.

Carolyn Hedley is a soil scientist at Landcare Research, based in Palmerstown North, New Zealand. Ian Yule leads the New Zealand Precision Agriculture Centre, also based in Palmerston North. More insight into precision agriculture practices in New Zealand will be highlighted in the Spring edition of PrecisionAg Special Reports.

Leave a Reply

Australia/New Zealand Stories
Australian Harvest
Australia/New ZealandAustralia: Data Deal to Make Digital Information More Accessible
September 25, 2017
The announcement of a three-year collaboration between one of Australia’s most well-known agriculture technology providers, Precision Agriculture, and Federation University Read More
Farmer with iPad
Australia/New ZealandAgrian Expands into Australia
September 20, 2017
In line with a familiar growth trajectory, Agrian Inc. is moving into Australia with a physical support and sales presence Read More
Petra-Andren-Cicada-Innovations
Australia/New ZealandGrowLab’s Rocket Fuel for AgTech in Australia
September 19, 2017
Despite its superpower status as a producer and exporter of agricultural goods and services, up until now Australia has had Read More
Wheat sunrise
Australia/New ZealandSparkLabs Group Launches an Agricultural Tech Accelerator Called Cultiv8 in Australia
September 15, 2017
SparkLabs Group, which claims to be the largest startup accelerator group in Asia, is stepping into agricultural tech with a Read More
Trending Articles
Farmer with iPad
Australia/New ZealandAgrian Expands into Australia
September 20, 2017
In line with a familiar growth trajectory, Agrian Inc. is moving into Australia with a physical support and sales presence Read More
John-Deere-labs
Tools & Smart EquipmentHow John Deere’s New AI Lab Is Designing Farm Equipment for a More Sustainable Future
September 15, 2017
On a block in San Francisco’s SoMa district, near LinkedIn’s headquarters and dozens of startups, a 180-year-old company best-known for Read More
BASF Maglis grower retailer tablet
Data ManagementWhat Will Happen to My Data? Understanding Your Rights in Precision Agriculture
September 12, 2017
The use of precision agriculture-based decision making to determine fertilizer rates and hybrid types and planting rates is becoming more Read More
Robotics/Labor SaversBlue River, Deere Deal Will Accelerate Farm Robot Innovation
September 11, 2017
No, Blue River Co-founder and CEO Jorge Heraud has not been deposed — Gaddafi-style — by big, bad corporate overlord Read More
Farming at Sunset
Business ManagementAgtech Issues: The Shiny Object Syndrome
September 6, 2017
Do you remember those cartoons where someone lures someone else by placing a piece of candy, small amount of money, Read More
AgQuip overview
Australia/New ZealandAgQuip 2017 Displays New Ag Technology in Australia
August 28, 2017
The annual AgQuip field days took place in Gunnedah, NSW on August 22-24. Being the largest agricultural field days in Read More
Latest News
Australian Harvest
Australia/New ZealandAustralia: Data Deal to Make Digital Information More A…
September 25, 2017
The announcement of a three-year collaboration between one of Australia’s most well-known agriculture technology providers, Precision Agriculture, and Federation University Read More
Mahindra-Photo-Money-Control
AsiaDrones for Soil Mapping? Mahindra Says Why Not
September 25, 2017
The Mumbai-based company is in talks with the Indian government seeking approval to make drones a part of farming methods, Read More
deepfield-robotics-bonirob
Robotics/Labor SaversDeepfield Robotics to Showcase Precision Agriculture Te…
September 22, 2017
Deepfield Robotics is preparing to showcase its robotics and automation technologies for the agriculture market at the Agrilevante event, in Read More
Kray Drone Application
DronesCrop Spraying Drone Manufacturer Kray Technologies Gets…
September 22, 2017
Chernovetskyi Investment Group (CIG) has reached an agreement on investment into Kray Technologies company, which manufactures Kray Protection industrial robotic Read More
Imagery/SensingPlanet Announces New Hi-Res Imagery Products
September 21, 2017
Since our acquisition of Terra Bella, and the SkySat constellation of seven satellites, we’ve been focused on making this high-resolution Read More
Systems ManagementBayer Dismisses Antitrust Concerns about Digital Farmin…
September 20, 2017
Bayer said it was unable to propose the sale of any digital farming assets to allay EU concerns about its Read More
Farmer with iPad
Australia/New ZealandAgrian Expands into Australia
September 20, 2017
In line with a familiar growth trajectory, Agrian Inc. is moving into Australia with a physical support and sales presence Read More
Robotics Specialty Crops
EventsPrecision in Specialty Crops Gains Momentum
September 20, 2017
When John Deere acquired Blue River Technologies (BRT) recently, BRT’s See & Spray technology received plenty of play. Yet many Read More
Decision Support SoftwareSyngenta Helps Lead Efforts for Farm Management Softwar…
September 19, 2017
Ag data from tractors, combines, planters, and other farm machinery present a huge opportunity for growers to manage their operations Read More
Petra-Andren-Cicada-Innovations
Australia/New ZealandGrowLab’s Rocket Fuel for AgTech in Australia
September 19, 2017
Despite its superpower status as a producer and exporter of agricultural goods and services, up until now Australia has had Read More
CropIn-Team-Photo-credit-BW-Disrupt
AsiaCropIn Aims to be a Global Leader in AgTech Sector
September 19, 2017
Krishna Kumar created AgTech startup, CropIn Technology in 2010, along with co-founders Kunal Prasad and Chittranjan Jena. The trio went Read More
China-Beidou-Navigation-Satellite-System
AsiaChina’s Navigation System Gets Powerful Chip to I…
September 18, 2017
A new powerful chip technology has been introduced in China’s national satellite navigation system to provide high-precision positioning, according to Read More
Tablet Grower
Industry NewsFieldReveal Names Hesse New CEO
September 18, 2017
Matt Hesse has been selected as the Chief Executive Officer of FieldReveal, a newly launched joint venture formed to deliver Read More
John-Deere-labs
Tools & Smart EquipmentHow John Deere’s New AI Lab Is Designing Farm Equipment…
September 15, 2017
On a block in San Francisco’s SoMa district, near LinkedIn’s headquarters and dozens of startups, a 180-year-old company best-known for Read More
Wheat sunrise
Australia/New ZealandSparkLabs Group Launches an Agricultural Tech Accelerat…
September 15, 2017
SparkLabs Group, which claims to be the largest startup accelerator group in Asia, is stepping into agricultural tech with a Read More
Sensors/IoTCollaboration Leverages Internet of Things, Sensors in …
September 15, 2017
The vision of having license-free community sensor networks for agricultural users has made a giant leap closer to reality. A Read More
Young Corn Field
Data ManagementPurdue Online Tool to Help Farmers Make Precision Decis…
September 14, 2017
An innovative online tool developed by a Purdue University engineering professor will allow farmers to process data collected from their Read More
forbes-agtech-summit
Precision IrrigationImproving Water Management: Can Silicon Valley Help?
September 13, 2017
I recently attended the Forbes AgTech Summit in Salinas, CA, where roughly 50 start-up companies originating from Silicon Valley and Read More