Precision Ag’s Role in Getting Nitrogen Right For a Better Environment

Scientists can be forgiven for thinking that when they come up with optimized methods for accomplishing some task, end-users will jump at the chance to implement the new ideas simply because they are better. If only it were that simple.

Farmers in particular have a tendency to stick with the tried-and-true. For pathways_precisionprecision agriculture to have a greater impact in the fields, research findings must be presented with the farmer’s perspective always in mind. Whether the farmer has a small plot in Africa or a large operation in Iowa, he can always do things smarter and more efficiently. Nitrogen management offers a perfect example of an area in which farmers must do better.

In many places around the world, farmers have a legal duty to ensure their use of the land does not result in an excessive amount of nitrates leaching into the groundwater. The European Commission’s Nitrates Directive, for example, was adopted in 1991.

In response, farmers have leaned on experience to fine-tune their existing management procedures and reduce leaching, but they do not necessarily know the answer to the question of exactly how much of the substance leaches into the groundwater during a cropping season.  For them, precision agriculture is not a cure-all. It is a technique that can fill specific and crucial gaps in their knowledge.

Perhaps the biggest gap in the market, from the farmer’s perspective, is the availability of formal decision support tools to help with needs such as nitrogen management. These flexible tools would incorporate all the excellent research that has been done on yield monitoring, variable-rate application of inputs and zone management in a coherent, easy-to-use package.

Such a toolset would be inherently adaptable to the practical needs of the individual farmer, which is important because no two farms are the same. Adaptability and practicality remain the key to securing the buy-in of end users.

Farmers often havAg Dronee an easier time justifying the purchase of a new tractor or combine than, say, a drone, an array of field sensors or a software package. After all, the value of heavy machinery is well established. How much benefit can be had from analytical tools? Quite a bit, it turns out.

Whether the purchase of any particular analytical tool makes economic sense is a question best answered by the tools themselves. Sensors are an integral component of yield monitors that measure field performance against revenue, ensuring that farmers see that the smarter, more accurate decisions they make have an impact on the bottom line. Properly implemented, sensor technologies are critical to achieving the data density required to ensure farmers have the economically actionable intelligence they need to improve their management practices.

Farmers are let down when they turn to methods like the Normalized Difference Vegetation Index (NDVI) to determine how much nitrogen they should use on their crops. NDVI determines the density of green in a field, which serves as a useful measure of plant health. Plant health is not the same as nitrogen stress, which is why relying on NDVI for variable rate nitrogen application can create undesirable results.

For instance, a field might show poor yields because of insufficient irrigation or insect stress. Applying more nitrogen will not improve the situation. Rather, it will waste the farmer’s resources and contribute to environmental degradation. Farmers need remote sensing tools that offer a more direct measurement of nitrogen stress than NDVI can provide.

This is critical, because the days of indiscriminately bombarding fields with nitrogen are coming to an end, to be replaced with more precise application of fertilizer. Precision agriculture lets the farmer know how much is enough, but coming up with the answer depends on having an appropriate array of crop canopy sensors that enable growers to escape old-fashioned methods of basing today’s nitrogen application on how much was applied last year.

True precision requires real-time analysis, as the right amount is always in flux. Dynamic factors such as soil moisture levels and weather conditions constantly alter a plant’s nitrogen uptake.  When combined with the technique of in-field reference strips, remote sensors arm growers with the data they need to more precisely apply nitrogen. If the output of a field matches the yield of the reference strip, no more nitrogen is needed. Conversely, if output is down in comparison, more nitrogen may be needed.

The most obvious payoff of advanced nitrogen optimization tools is the extra bushels at harvest time. For the farmer struggling to make it through depressed commodity prices, big savings on input costs are also hard to ignore. Yet the greatest benefit of all would be measured in the environment.

Failure to apply nitrogen with precision causes significant harm. As much as nitrogen delivers a massive boost to corn yield, it has an even greater effect in promoting algae growth when fertilizer runoff hits a stream or lake.

Eutrophication is the term used to describe the resulting overabundance of nutrients in a body of water. While plankton and algae feast upon the bounty of nitrates, they also multiply rapidly and disrupt the ecosystem’s balance. The algae that die end up consuming enough of the available oxygen that native fish suffocate.

In addition to this, nitrates making their way into the water supply raise significant human health concerns. The Environmental Protection Agency considers levels above 10 parts per million a hazard to drinking water, reflecting an elevated risk of various forms of cancer. The situation is so serious in central Iowa that farmers have their livelihoods at risk in a lawsuit filed by the Des Moines Water Works over runoff.

The best way to get ahead of any such developments is to get nitrogen right in the first place, which is to say, by applying no more nitrogen than the plant can absorb. The Iowa Soybean Association keeps track of the performance of nitrogen sensing in the field. Most farmers are reporting savings of between $10 and $20 per acre in reduced fertilizer costs, meaning that growers recoup the cost of sensors within a year or two in many cases

Byrum is Senior R&D and Strategic Marketing Executive in Life Sciences – Global Product Development, Innovation and Delivery at Syngenta. Byrum will present the session, “Solving Big Problems: Innovation Through Open Collaboration” at the PrecisionAg Vision Conference on October 19. For more information visit www.precisionagvision.com

Leave a Reply

One comment on “Precision Ag’s Role in Getting Nitrogen Right For a Better Environment

  1. I can reveal nitrogen needs of hundreds of thousands of acres per day, in real time, using the near infrared band with 20″ resolution before the grower even knows he has a problem.
    It is georeferenced and georectified.
    I can convert the infrared image to units of nitrogen needed in an area as small as 80 sq ft and deliver as much or as little is needed at 160 mph, regardless of soil or crop conditions.
    My name is Rex Lester and I have just solved your problem…

Specialty Crops Stories
deepfield-robotics-bonirob
Robotics/Labor SaversDeepfield Robotics to Showcase Precision Agriculture Technology at Agrilevante
September 22, 2017
Deepfield Robotics is preparing to showcase its robotics and automation technologies for the agriculture market at the Agrilevante event, in Read More
Kray Drone Application
DronesCrop Spraying Drone Manufacturer Kray Technologies Gets Investment from CIG
September 22, 2017
Chernovetskyi Investment Group (CIG) has reached an agreement on investment into Kray Technologies company, which manufactures Kray Protection industrial robotic Read More
Robotics Specialty Crops
EventsPrecision in Specialty Crops Gains Momentum
September 20, 2017
When John Deere acquired Blue River Technologies (BRT) recently, BRT’s See & Spray technology received plenty of play. Yet many Read More
forbes-agtech-summit
Precision IrrigationImproving Water Management: Can Silicon Valley Help?
September 13, 2017
I recently attended the Forbes AgTech Summit in Salinas, CA, where roughly 50 start-up companies originating from Silicon Valley and Read More
Trending Articles
Farmer with iPad
Australia/New ZealandAgrian Expands into Australia
September 20, 2017
In line with a familiar growth trajectory, Agrian Inc. is moving into Australia with a physical support and sales presence Read More
John-Deere-labs
Tools & Smart EquipmentHow John Deere’s New AI Lab Is Designing Farm Equipment for a More Sustainable Future
September 15, 2017
On a block in San Francisco’s SoMa district, near LinkedIn’s headquarters and dozens of startups, a 180-year-old company best-known for Read More
BASF Maglis grower retailer tablet
Data ManagementWhat Will Happen to My Data? Understanding Your Rights in Precision Agriculture
September 12, 2017
The use of precision agriculture-based decision making to determine fertilizer rates and hybrid types and planting rates is becoming more Read More
Robotics/Labor SaversBlue River, Deere Deal Will Accelerate Farm Robot Innovation
September 11, 2017
No, Blue River Co-founder and CEO Jorge Heraud has not been deposed — Gaddafi-style — by big, bad corporate overlord Read More
Farming at Sunset
Business ManagementAgtech Issues: The Shiny Object Syndrome
September 6, 2017
Do you remember those cartoons where someone lures someone else by placing a piece of candy, small amount of money, Read More
AgQuip overview
Australia/New ZealandAgQuip 2017 Displays New Ag Technology in Australia
August 28, 2017
The annual AgQuip field days took place in Gunnedah, NSW on August 22-24. Being the largest agricultural field days in Read More
Latest News
deepfield-robotics-bonirob
Robotics/Labor SaversDeepfield Robotics to Showcase Precision Agriculture Te…
September 22, 2017
Deepfield Robotics is preparing to showcase its robotics and automation technologies for the agriculture market at the Agrilevante event, in Read More
Kray Drone Application
DronesCrop Spraying Drone Manufacturer Kray Technologies Gets…
September 22, 2017
Chernovetskyi Investment Group (CIG) has reached an agreement on investment into Kray Technologies company, which manufactures Kray Protection industrial robotic Read More
Imagery/SensingPlanet Announces New Hi-Res Imagery Products
September 21, 2017
Since our acquisition of Terra Bella, and the SkySat constellation of seven satellites, we’ve been focused on making this high-resolution Read More
Systems ManagementBayer Dismisses Antitrust Concerns about Digital Farmin…
September 20, 2017
Bayer said it was unable to propose the sale of any digital farming assets to allay EU concerns about its Read More
Farmer with iPad
Australia/New ZealandAgrian Expands into Australia
September 20, 2017
In line with a familiar growth trajectory, Agrian Inc. is moving into Australia with a physical support and sales presence Read More
Robotics Specialty Crops
EventsPrecision in Specialty Crops Gains Momentum
September 20, 2017
When John Deere acquired Blue River Technologies (BRT) recently, BRT’s See & Spray technology received plenty of play. Yet many Read More
Decision Support SoftwareSyngenta Helps Lead Efforts for Farm Management Softwar…
September 19, 2017
Ag data from tractors, combines, planters, and other farm machinery present a huge opportunity for growers to manage their operations Read More
Petra-Andren-Cicada-Innovations
Australia/New ZealandGrowLab’s Rocket Fuel for AgTech in Australia
September 19, 2017
Despite its superpower status as a producer and exporter of agricultural goods and services, up until now Australia has had Read More
CropIn-Team-Photo-credit-BW-Disrupt
AsiaCropIn Aims to be a Global Leader in AgTech Sector
September 19, 2017
Krishna Kumar created AgTech startup, CropIn Technology in 2010, along with co-founders Kunal Prasad and Chittranjan Jena. The trio went Read More
China-Beidou-Navigation-Satellite-System
AsiaChina’s Navigation System Gets Powerful Chip to I…
September 18, 2017
A new powerful chip technology has been introduced in China’s national satellite navigation system to provide high-precision positioning, according to Read More
Tablet Grower
Industry NewsFieldReveal Names Hesse New CEO
September 18, 2017
Matt Hesse has been selected as the Chief Executive Officer of FieldReveal, a newly launched joint venture formed to deliver Read More
John-Deere-labs
Tools & Smart EquipmentHow John Deere’s New AI Lab Is Designing Farm Equipment…
September 15, 2017
On a block in San Francisco’s SoMa district, near LinkedIn’s headquarters and dozens of startups, a 180-year-old company best-known for Read More
Wheat sunrise
Australia/New ZealandSparkLabs Group Launches an Agricultural Tech Accelerat…
September 15, 2017
SparkLabs Group, which claims to be the largest startup accelerator group in Asia, is stepping into agricultural tech with a Read More
Sensors/IoTCollaboration Leverages Internet of Things, Sensors in …
September 15, 2017
The vision of having license-free community sensor networks for agricultural users has made a giant leap closer to reality. A Read More
Young Corn Field
Data ManagementPurdue Online Tool to Help Farmers Make Precision Decis…
September 14, 2017
An innovative online tool developed by a Purdue University engineering professor will allow farmers to process data collected from their Read More
forbes-agtech-summit
Precision IrrigationImproving Water Management: Can Silicon Valley Help?
September 13, 2017
I recently attended the Forbes AgTech Summit in Salinas, CA, where roughly 50 start-up companies originating from Silicon Valley and Read More
Nate-Dorsey-Field-Trial-Curve-Compensation
Systems ManagementField Trial: Precision Application and Curve Compensati…
September 13, 2017
Several months ago I wrote an article about curve compensation in planters and how these systems can help create more Read More
Diamondback moth
Tools & Smart EquipmentTechAccel Invests in Unique Sprayable RNAi Pesticide Te…
September 12, 2017
TechAccel, the Kansas City-based technology and venture development company, has announced it has awarded the first grant under its “Path Read More